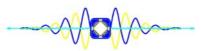


VIB GUMMIFEDERELEMENTE ANWENDUNGEN APPLICATION PHOTOS OF VIB ELASTIC COMPONENTS

OBERFLÄCHENBEHANDLUNGEN: LACKIERT / SUPERFICIAL PAINTING TREATMENT:



Die Standardfarbe der VIB Produkte Position @ ist Hammerschlageinbrenntlackierung. Auf Wunsch können wir in jeder RAL - Farbe liefern. / The standard colour of the VIB products is that one at the position ① "Arabesqued". Upon request we can supply all the colours of the RAL range

PRÄSENTATION DES UNTERNEHMES UND TECHNOLOGIE

PRESENTATION OF THE COMPANY AND

FIRMEN PRESENTATION UND TECHNOLOGIE

PRESENTATION OF THE COMPANY AND TECHNOLOGY

Seite

SPANNELEMENTE (PATENTIERT)

TENSIONERS (PATENTED)

SPANNELEMENTE AUS KUNSTSTOFF (PATENTIERT)

PLASTIC TENSIONERS (PATENTED)

GUMMIFEDERELEMENTE

MODULAR ELASTIC ELEMENTS

SCHWINGELEMENTE

OSCILLATING ELASTIC ELEMENTS

SCHWINGUNGSDÄMPFER

ANTI-VIBRATION ELASTIC ELEMENTS

MOTORWIPPEN

ELASTIC ELEMENTS FOR MOTOR BASES

Seite 123-127

> Seite 128-129

Seite

Seite 137-167

KETTENRAD "PT"

PINION TIGHTENERS "PT"

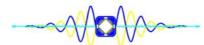
ROLLEN KETTEN

ROLLER CHAINS

GELENKFÜßE

SUPPORTS AND LIVELLING COMPONENTS

SPANNELEMENTE ASSO


TENSIONERS ASSO

SPANNELEMENTE BLU (PATENTIERT)

TENSIONERS BLU (PATENTED)

PRÄSENTATION DES UNTERNEHMENS / COMPANY INTRODUCTION

Vorstellung des Unternehmens / Introduction to the company

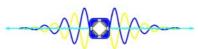
Tecnidea Cidue - TC2 - ist eine Gesellschaft, die zur Unternehmensgruppe C.F.M.G. S.r.I. gehört. Sie wurde 1988 gegründet, um dem Wunsch der Gesellschafter nach Einführung von neuen Produkten im Bereich der Transmission von Kraft auf dem internationalen Markt; die innovativen Hauptmerkmale dieser Produkte führten zu einer Patentierung eines Großteils des Sortiments. Im Laufe der Jahre konnte sich die Tecnidea Cidue als eines der Leader-Unternehmen im Bereich der Herstellung von automatischen und manuellen Kettenspannern/Riemenspannern, Gummifederelementen, Schwingungsdämpfern, Schwingelementen, Zahnrädern, Verbindungselemente,

multidirektionale Ketten und Kettenrädern behaupten. Tecnidea Cidue stellt ihren Kunden auf internationaler Ebene das umfangreichste Programm zur Verfügung. Das bedeutet, dass Technikern, Planern und Verbrauchern eine große Auswahl geboten wird, welche es ihnen ermöglicht, das Produkt zu erwerben, das ihren Ansprüchen am ehesten Genüge leistet und zur Lösung von Problemen beiträgt, die mit den herkömmlichen Ansätzen unlösbar gewesen wären.

Der Erfahrungsreichtum vieler Jahre, das umfangreiche Angebot an Produkten und Lösungsvorschlägen, unser Wissen und technologisches Know-how sind die Basis unseres Unternehmens als idealer Lieferant, der seinen Kunden als eine einzige Referenz für diverse Probleme zahlreiche Vorzüge, auch wirtschaftlicher Art bietet.

Tecnidea Cidue is a company of C.F.M.G S.r.l. Group; it was founded in 1988 according to the will of Mr. Franco Canova to introduce innovative products in the power transmission area on the international market. Over the years Tecnidea has established itself as one of the leading firms that produce and sell chain or belt tighteners, elastic and oscillating elements, anti-vibration devices, shock absorbers, decelerating devices, dovetailers and connecting units, multidirectional chains and chain tightening pinions.

Tecnidea Cidue offers to its customers the widest production range worldwide; this means that technical departments, designers and end users have the chance to choose the most suitable product for each application, so in this way you can solve the problems that standardised products can not. Many years of experience, the wide production range and our knowhow make us as the perfect partner to work with, because the customer can have many technical advantages and obviously economic benefits.



UNSERE PRODUKTE SIND "MADE IN ITALY"

OUR PRODUCT ARE "MADE IN ITALY"

PRÄSENTATION DES UNTERNEHMES UND TECHNOLOGIE PRESENTATION OF THE COMPANY AND TECHNOLOGY

Qualitätszertifikat / Quality certification

Das Qualitätszertifikat bescheinigt dem Kunden und dem Unternehmen ein einwandfreies Qualitätsniveau der Produkte und der Dienstleistungen. Tecnidea ist mit der Gesellschaft Tecnidea Cidue verbunden, welche der Unternehmensgruppe einen Großteil der Produkte liefert. Die Gesellschaft ist durch die Organisation DNV gemäß dem Standard ISO 9001:2008 ausgezeichnet, was es ihr gestattet, jeden Unternehmensbereich bestmöglich zu verwalten und Unternehmensprozess gemäß interner Prozeduren, Verfahrensschemata, Arbeitsanweisungen und Statistiken, in denen zentrale Punkte, von der Anzahl an Reklamationen bis zu Lieferverzögerungen verzeichnet werden, zu überwachen. Die Gesamtheit dieser Aktivitäten ermöglicht dem Personal eine beständige Verbesserung. Zu Beginn eines jeden Jahres analysieren Leitung des Qualitätsmanagements gemeinsam mit Unternehmensleitung den Verlauf des abgeschlossenen Jahres und setzen immer höhere Ziele, um jeden Bereich des Unternehmens konstant zu verbessern.

Einer der Protagonisten dieser ständigen Entwicklung ist das unternehmensinterne Personal. Aus diesem Grund ist ein zentrales Ziel der Gesellschaftsleitung, alle Mitarbeiter in die Firmenaktivität einzubeziehen. Demzufolge werden interne Fortbildungsveranstaltungen realisiert und jedem Mitarbeiter die Möglichkeit gegeben, durch eigene Initiative die diversen Unternehmenssektoren zu verbessern.

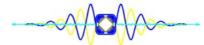
The quality certification assures the customer and the company a very good quality level both of product and service. Tecnidea Cidue is certificated with the company DNV in accordance with regulations ISO 9001:2008, it allows to manage, as well as possible, every business area and to check all the company processes, following internal procedures, process maps and operating instructions and filling forms about company index in, which vary from the number of complaints to that one of delivery delay. All these activities allow the staff to improve itself constantly, in fact at the beginning of every year the Quality Management Person in Charge with the General Direction analyses the trend of the previous year and issues index levels always more in order to pursue continuously improvements in every company area.

One of the protagonists of this continuous development is the staff who works in the company, for this reason an important aim the Direction is called for is to let all the employees feel involved in the company activity and concerning this it organizes internal instructive courses and enables every employee to require activities for improving the quality of respective departments.

Produkte und Technologie / Product and Technology

Aktuell verfügt Tecnidea Cidue über mehr als 250'000 Variationen seiner in der untenstehenden Tabelle angegebenen Produktlinien. Im vorliegenden Katalog sind nur die Produkte, gekennzeichnet mit dem Symbol ▲ (Teil der Produktionsreihe ▲ auf dem Deckblatt des Katalogs) aufgeführt; die übrigen Produkte werden in spezifischen Katalogen illustriert

Die vielen arbeitsintensiven Jahre und die kontinuierliche Forschungsaktivität unserer Techniker haben dem Unternehmen innovative Produkte zugeführt, welche unser Produktsortiment um Applikationen bereichert haben, die neben der Transmission auch andere Maschinenbereiche und industrielle Anlagen einbeziehen. In dieser Edition werden die neuesten, um innovative Produkte und Anwendungsmöglichkeiten bereicherten Kataloge präsentiert.


At the moment Tecnidea Cidue can market over than 250'000 variables of its products, shared out in the production lines below mentioned in the table. In the following catalogne are showed only the products marked by the symbol below the wording "available"; the remaining products are showed separately in specific catalogues.

The many years of work and the continuous diligence of our engineers in the research, have brought new products to our Company, that have increased furtherly our range of production with applications that concern besides the power transmission also other parts of the machines and the industrial plants. In this edition are proposed the updated and enlarged catalogues together with the new products and the new solutions.

PRÄSENTATION DES UNTERNEHMES UND **TECHNOLOGIE**

Lieferprogramm: / The production lines are:

PRESENTATION OF THE COMPANY AND TECHNOLOGY

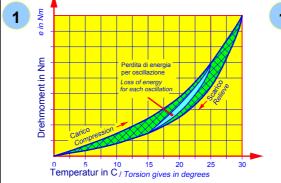
KATALOG CATALOGUE			
A	TEN BLOC BLU ARIA OLIO TEN JOY ASSO	PATENTIERT PATENTED	Automatische axiale Spannelemente Automatic axial tighteners
A A	ARCO CRESA CIAO NIC	PATENTIERT PATENTED	Automatische Dreh-Spannelemente Automatic rotation tighteners
A	MIX PTC PTF		Manuelle Spannelemente - Pignoni Tendicatena Manual Tightener - Chain Tightening pinions
A	VIB		Gummifederelemente - Schwingelemente Schwingungsdämpfer - Motorwippen Elastic Elements - Oscillating Elements Anti-vibrating devices - Motor Bases
A	3KD	PATENTIERT PATENTED	Multiderektionale Rollenkette Multidirectional Roller Chain
	CAFRA SCHLÜSSEL	PATENTIERT PATENTED	Verkeiler Dovetailers and Connection units
	GS BLU GD BLU	PATENTIERT PATENTED	Axiale gleit bahnen Axial slideways

Handelprodukte: / Sales products:

KATALOG CATALOGUE		
A	CAT	Rollenkette / Roller Chains
A	PLOC	Automatischer Schlagstempel / Automatic punch
A	PIEDINI	Gelenkstellfüße / Supports and levelling components
-	MARKET	Market / Market

Die Artikel Ketten- und Riemenspanner setzen sich wie folgt zusammen: Chain and Belt tensioners are as follow shared:

AUTO	MATISCHE	MANUELLE
AXIALE	RADIALE	MIX
TEN BLOC	ARCO	PTC
TEN JOY	CRESA	TEN BLOC only type TF
ARIA	CIAO	ASSO only type AH
OLIO	NIC	
ASSO		
BLU		

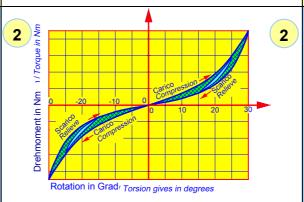


S.r.l.

TECHNOLOGIE: FUNKTIONELLE EIGENSCHAFTEN VON GUMMI TECHNOLOGY: RUBBER FUNCTIONAL FEATURES

DÄMPFUNGSFAKTOR

Die Differenz zwischen Belastungsund Entlastungskurve entspricht der
von den Elastomeren absorbierten
Energie. Die Quantität der
absorbierten Energie ist von diversen
Faktoren, beispielsweise der
Temperatur, der
Drehgeschwindigkeit und den
Rotationswinkeln abhängig. Das
nebenstehende Diagramm stellt die
Energie dar (blauer Bereich), die
während einer Schwingung bei
einem Rotationsgrad zwischen +15°

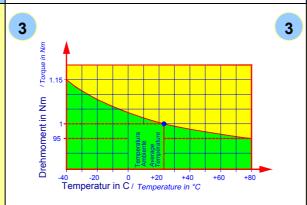

SHOCK ABSORBING FACTOR

The difference between the loading and unloading curve shows the energy that is absorbed by the elastomers. The quantity of the absorbed energy depend on different factors, as for example the temperature, the rotational speed and the rotational angle. On diagram sideways (the blue area) it is shown the energy absorbed for an oscillation included between +15° and +25° of rotation.

ELASTISCHE CHARAKTERISTIK

e +25° absorbiert wird.

Alle SPANNELEMENTE und GUMMIFEDERELEMENTE zeichnen sich durch progressive und symmetrische Eigenschaften in beide Richtungen bei Winkeln von ±30°aus.

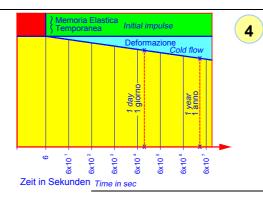


ELASTICITY

All the TIGHTENERS and ELASTIC ELEMENTS have a progressive and symmetric feature in the two directions for the angles included between ±30°.

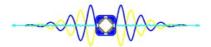
BETRIEBSTEMPERATUR

Der erzeugte Drehmoment hängt von der Betriebstemperatur ab. Bei einem Anstieg der Temperatur werden die mechanischen Charakteristiken und die Dämpfungskapazität der Elastomere verringert. Es muss berücksichtigt werden, dass die Betriebstemperatur des Gummis aufgrund des Energieverlusts durch Molekularreibung im Inneren der Elastomere, höher als die der Umgebungstemperatur ist.


OPERATING TEMPERATURE

The generated couple depends on the operating temperature. At the increase of the temperature, the mechanical features and the damping of elastomers decrease. You have to consider that the rubber operating temperature is higher than the room temperature, this because of the dispersion of the energy created by the molecular friction of the elastomers.

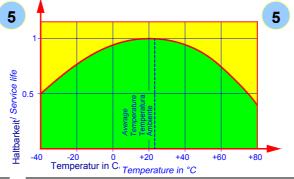
DEFORMATION DES GUMMIS


4

Dar Umstand des Kriechens erzeugt eine residuale Deformation in den Elastomeren. Das nebenstehende Diagramm zeigt auf der logarhythmischen Skala die Abweichung vom Punkt Null nach der Applikation einer permanenten Last: die residuale Deformation nach einem Jahr ist zirka doppelt im Vergleich zu der im Laufe eines Tages erzeugten.

LONG-TERM DEFORMATION OF THE RUBBER

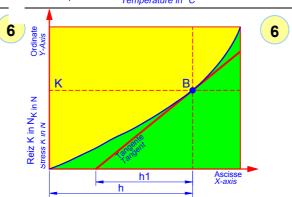
The cold flow phenomenon creates a residual deformation on the elastomers. The graph at the side shows with a logarithmic scale, the deviation from zero point, after a permanent stress application. The residual deviation, obtained after one year, is quite two times the one obtained in a day.



TECHNOLOGIE: FUNKTIONELLE EIGENSCHAFTEN VON GUMMI TECHNOLOGY: RUBBER FUNCTIONAL FEATURES

HALTBARKEIT

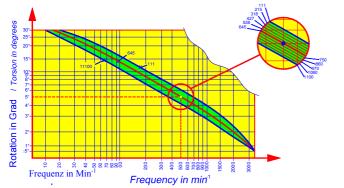
Die Haltbarkeit der Produkte auf Gummibasis steht in einem Zusammenhang mit der Betriebstemperatur. Die vertikale Linie des nebenstehenden Diagramms verdeutlicht die Betriebstemperatur welcher der Einheitsfaktor der Haltbarkeit entspricht.


DURABILITY

The durability of the rubber-based products depends on the operating temperature. The vertical line on the sideway graph identifies the room temperature to which corresponds a unitary durational factor.

EIGENFREQUENZ

Die Eigenfrequenz der Produkte Tecnidea hängt stark von dem Pfeil (h) unter Belastung ab. Der Pfeil beschreibt die Senkung in mm des Gummifederelements unter der applizierten Last K. Zur Berechnung muss die Tangente durch den Punkt B gezogen werden, in Entsprechung mit dem Reiz K. Durch die Intersektion mit der X-Achse wird h₁ ermittelt und die Eigenfrequenz fo ist:



SPECIFIC FREQUENCY

The natural frequencies of the Tecnidea products depend strongly on the (h) on loaded arrow. With the arrow word, we mean the lowering in mm of the elastic elements with a K applied charge. For the calculation you have to draw the tangent in the B point, in correspondence of the K stress. By the intersection with the axis of the abscissas you can obtain h_1 and the f_0 natural frequency is:

$$f_0 = \frac{0.5}{\sqrt{\frac{h_1}{10}}} \quad \begin{bmatrix} Hz \end{bmatrix}$$

7

8

ZULÄSSIGE FREQUENZ

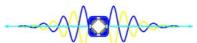
Die zulässigen Maximalfrequenzen befinden sich zwischen den beiden Kurven des nebenstehenden Diagramms. Je höher die Frequenz ist, desto geringer wird der maximale realisierbare Schwingungswinkel sein.

FRMITTED FREQUENCY

The maximum possible frequencies are included between the two curves on the graph at the side. The higher is the frequency, the lower will be the maximum reachable oscillation angle.

200 **Hub der Feder h1 in** Frequenz in Min⁻¹/ Frequency in min

GENFREQUENZ IN FUKTION DES HUBS DER


FEDER Das nebenstehende Diagramm zeigt das Verhältnis zwischen Hub h₁ und Eigenfrequenz f₀. Jedem Wert der Pfeils entspricht eine bestimmte Resonanzfrequenz und beide Größen verhalten sich proportional zueinander.

FREQUENCY ACCORDING TO THE SPRING STROKE

The sideway diagram shows the relation between the stroke h1 and the natural frequency f₀. To each value of the arrow corresponds a certain resonance frequency and the two sizes are inversely proportional.

PRÄSENTATION DES UNTERNEHMES UND ESENTATION OF THE COMPANY AND

TECHNOLOGY

TECHNOLOGIE: "SPEZIAL" LÖSUNGEN TECHNOLOGY: "SPECIAL" SOLUTIONS

Wenn unser Standardprogramm speziellen Anforderungen nicht entspricht, stellt Tecnidea Sonderanfertigungen her, welche den spezifischen Bedarf des Kunden unter Garantie strengster Vertraulichkeit zufrieden stellen.

Wir haben zudem die Möglichkeit, spezielle Einzelteile aus Gusseisen, Aluminium, Kunststoff oder gelötetem Stahl oder Sinterstahl zu konstruieren.

Tecnidea lässt all seinen Gummifederelementen diverse Oberflächenbehandlungen zukommen: Verzinkung, Vernickelung, Galvanisierung oder Lackierung mit allen Farben des Spektrums RAL:

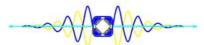
In the case of our standard range could not be able to solve particular needs, Tecnidea can also realize special solutions that could satisfy all the specific requests of the customer, at whom will be granted the maximum discretion. Moreover we can also made special details in cast iron, aluminium, plastic or soldered steel or sintered.

Tecnidea produces all its Elasitc Elements with different superficial treatments, as: galvanizing, nickel-plating, galvanization or painting with all the colours of the RAL range:

Auch die Farbe ist wichtig! Verleihen Sie Ihrer Maschine mit der Farbe Ihrer Wahl einen persönlichen Touch!

Also the colour is important! Personalize your machine with the colour you prefer!

Unsere Standardfarbe ist Arabeskenschwarz . / Our standard color is black arabesqued


Lösungen aus rostfreiem Stahl:

In zahlreichen Anwendungsbereichen der Industrie wie zum Beispiel die Nahrungsmittelindustrie oder der Pharmazeutischen Industrie kommen Einzelteile aus rostfreiem Material zum Einsatz. Um diesem Bedarf zu entsprechen, konstruiert Tecnidea auf Anfrage all ihre Produkte aus der Stahlart AISI 304. Da diese Produkte zumeist aus gelötetem Stahl realisiert werden, können die Größen dieser Artikel von denen im Katalog aufgeführten abweichen. Wir bitten unsere Kundschaft aus diesem Grund, uns bezüglich der Dimensionsskizzen und technischen Charakteristiken zu kontaktieren.

Solution in stainless steel:

More applicative sectors of the industry, like for example the food or pharmaceutical ones, require details made in stainless material. To satisfy these needs, Tecnidea builds, on demand, all its products in AISI 304 steel. Since that the products are prevalently made in soldered steel, the dimensions of these details could be different from the ones described in this catalogue. We invite for this reason our customers to ask us the dimensional drawings and the technical features.

TECHNOLOGIE / TECHNOLOGY:

Chemische Resistenz des Gummis

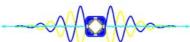
Das Naturgummi, das bei unseren Produkten zum Einsatz kommt, ist Ergebnis einer eingehenden Forschungsarbeit um die elastischen Charakteristiken optimieren und eine zeitdauernde Einsatzfähigkeit garantieren zu können.

In der unten stehenden Tabelle wird die ungefähre chemische Resistenz des Gummis im Verhältnis zu verschiedenen Substanzen aufgelistet. Diese Resistenz hängt zum Großteil auch von der Konzentration des Produktes ab, mit der das Gummi in Kontakt tritt: Es empfiehlt sich, für spezielle Applikationen Tests an der Anlage durchzuführen. Für spezielle Anwendungen bitten wir Sie, unser technisches Büro zu Rate zu ziehen.

(+++ = Sehr gut ++ = Gut + = Ausreichend • = Schwach)

Rubber chemical resistance

The natural rubber used in our products is the result of a deep study to optimize its elastic features and to grant it a longer yield in the time.


In the lower table it is shown the indicative chemical resistance of the rubber at the different substances. This resistance depend strongly also on the concentration of the product with which the rubber came in contact: it is advisable, for specific applications, to made some tests on the plant. For particular applications, please, contact our technical office.

(+++=Very good ++=Good +=Satisfactory •=Mediocre)

Aceton	+	Acetone
Essigsäure bis 25%	++	Acetic acid up to 25%
Zitronensäure	++	Citric acid
Salzsäure bis 15%	+++	Hydrochloric acid up to 15%
Ameisensäure	+++	Formic acid
Phosphorsäure bis 85%	•	Phosphoric acid up to 85%
Milchsäure	+++	Lactic acid
Salpetersäure bis 10%	•	Nitric acid up to 10%
Schwefelwasserstoff	•	hydrogen sulfide
Schwefelsäure bis 10%	+	Sulphuric acid up to 10%
Gerbsäure	+++	Tannic acid
Weinsteinsäure	+	Tartaric acid
Wasser	+++	Water
Meerwasser	+++	Seawater
Alkohol	+++	Alcohol
Ammoniak flüssig	+	Ammonia
Benzin	•	Gasoline
Benzol	•	Benzol
Glycerin	+++	Glycerine
Natriumhypochlorid	++	Sodium Clorite
Milch	+++	Milk
Zuckermelasse	+++	Molasses
Diesel	•	Diesel fuel
Hydraulische Öle	•	Hydraulic oil
Schmieröle	•	Lubricating oil
Petroleum	•	Petrol
Natronlaugen bis 25% (20°C)	+++	Caustic soda up to 25% (20°C)
Natriumhydroxid 85%	+++	Caustic soda up to 85%
Lackentferner	•	Varnish solvent
Obstsäfte	+++	Fruit juice
Toluol	•	Toluene
Wein	+++	Wine

PRÄSENTATION DES UNTERNEHMES UND TECHNOLOGIE PRESENTATION OF THE COMPANY AND TECHNOLOGY

SPANNELEMENTE und SPANNELEMENTE AUS KUNSTSTOFF TENSIONERS and PLASTIC TENSIONERS

Die Spannelemente **TECNIDEA CIDUE** werden in erster Linie zur automatischen Bewahrung der korrekten Spannung von Transmissionsketten oder Transmissionsriemen eingesetzt. Vorteile im Vergleich zu traditionellen manuellen Methoden ergeben sich aus der Kapazität der Selbstregulierung und Dämpfung der Schwingungen (und dementsprechend auch des Geräuschs des Systems), die Spannelemente benötigen jedoch vor allem weder Schmierung noch Wartung.

Zudem können diese Produkte in anderen Einsatzbereichen beispielsweise als Druckstücke, Führungselemente, Förderbandabstreifer, Stoßdämpfer etc. zum Einsatz gebracht werden können.

Die automatischen **SPANNELEMENTE** in ihrer Standardversion (RE) bestehen aus einem Körper aus Stahl oder Gusseisen und einem Hebel aus Stahl. Beide Komponenten sind ofenlackiert, um einer Oxidierung oder Korrosion der Oberfläche vorzubeugen. Es ist möglich, die **SPANNELEMENTE** mit einer Behandlung der Vernickelung (REG) oder Verzinkung (REZ) zur Verfügung zu stellen.

Die **SPANNELEMENTE AUS KUNSTSTOFF** sind durch einen Körper und einen Hebel (intern aus Stahl) aus PA 6-30% FV realisiert. Diese Artikel sind ideal zur kostengünstigen Lösung aller Korrosionsprobleme in Bereichen mit Präsenz von Wasser.

SPANNELEMENTE und **SPANNELEMENTE AUS KUNSTOFF** funktionieren durch das Rotationsprinzip von zwei zueinander in einem Winkel von 45° positionierten Elemente quadratischen Querschnitts, denen die Elastizität von vier Zylindern aus Naturkautschuk entgegen gesetzt wird, die zwischen beide Teile integriert werden.

Die Gesamtheit dieser Artikel arbeitet "durch Rotation", der erreichbare Maximalwinkel liegt, gegen und mit dem Uhrzeigersinn, bei 30°. Eine gemeinsame Charakteristik dieser Produkte ist ihre Kapazität, die Schwingungen durch Nutzung der Eigenschaft der Elastomere (die elastische Hysterese) zu dämpfen. Durch diese entsteht ein Dämpfungsfaktor, der Schwingungen und Geräusche, die typisch für Anlagen mit Ketten- und Riementransmission sind, abschwächt.

Die Betriebstemperatur muss zwischen -40°C und +80°C liegen.

SPANNELEMENTE und **SPANNELEMENTE AUS KUNSTSTOFF** können mit verschiedenen Kits oder Zubehör vervollständigt werden, was ihren Einsatz in Kontakt mit Ketten und Riemen ermöglicht.

Für Spezialausführungen oder Artikel aus rostfreiem Stahl, sowie für detaillierte Auskünfte können Sie gern unser technisches Büro kontaktieren.

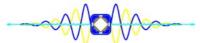
Alle Größenangaben des vorliegenden Katalogs sind in Millimetern (mm) ausgedrückt.

The **TECNIDEA CIDUE** tensioners are mainly used to keep automatically in the right tension the chains and transmission belts. The advantages, compared to the traditional manual tensioning methods, are the ability of self adjustment and of damping of the vibration effects (reducing consequently the noisiness of the system), but especially they don't need lubrication and they are maintenance free.

Moreover, these products can also find other application areas, as pressure elements, guide rails, scraper suspensions, bumpers etc.

The automatic **TENSIONERS** in the standard version (RE) are made of a steel or cast iron body and of a steel lever. Both the components are oven painted to buck possible oxidation or corrosion phenomena on the surfaces. The **TENSIONERS** can also be supplied with a nickel-plating treatment (REG) or a zinc-plating treatment (REZ).

The **PLASTIC TENSIONERS** are made of a plastic (PA 6-30% FV) body and of a lever (with an internal steel reinforcement). These products are ideal to solve in an economical way the problems concerning the corrosion in places where there is the presence of the water.

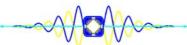

The **TENSIONERS** and the **PLASTIC TENSIONERS** have the same operating principle based on the relative rotation of two square-section elements rotated 45° with respect to each other, that is bucked by the elasticity of four natural rubber cylinders positioned between the two sections.

For this reason all these articles work "at rotation" and the maximum reachable angle is 30°, both in the clockwise and in the anticlockwise. The common feature of these products is the ability to damp the vibrations, taking advantage of an elastomer property (the elastic hysteresis) which creates a shock absorbing effect and reduces the vibration phenomena and the typical noise of the transmission plants by chains and belts. The working temperature must be included in a range between -40°C and +80°C.

Both the **TENSIONERS** and the **PLASTIC TENSIONERS** can be combined with kits or accessories that allow to use them in contact with chains and belts.

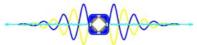
For special executions or for stainless steel solutions or for more information you can contact our technical department.

All the dimensions of this catalogue are in millimetre (mm).



SPANNELEMENTE LIEFERPROGRAMM / TENSIONER RANGE

Seite 24 Seite 25 Seite 26 Seite 27		Α	В	С	D	
Seite 24 Seite 25 Seite 26 Seite 27 CEB - CEBP CEA - CEAP Seite 28 Seite 28 Seite 29 Seite 29 Seite 29 Seite 29 Seite 29 Seite 30 VR OVR RO ZNZI Seite 32 Seite 32 Seite 33 Seite 34 Seite 37 Seite 38 Seite 38 Seite 38 Seite 39 Seite 37 Seite 38 Seite 38 Seite 39 Seite 39 Seite 37 Seite 40 Seite 41 Seite 41 Seite 42 Seite 43 Seite 43 Seite 43	1			=		
CEB - CEBP CEA - CEAP CET - CETP CEP - CEPP 2 Seite 28 Seite 29 Seite 29 RER SX - RER DX REMER RERU 3 Seite 30 Seite 30 VR OVR RO ZN/ZI 4 Seite 32 Seite 33 Seite 34 Seite 35/36 ZK RP RU SP 5 Seite 37 Seite 38 Seite 38 Seite 39 PR SU ST V 5 Seite 41 Seite 41 Seite 41 FM FPI REG REZ REZ 7 Seite 42 Seite 42 Seite 43	1					1
Seite 28 Seite 28 Seite 29 Seite 30 Seite 31 Seite 32 Seite 33 Seite 34 Seite 35/36 ZK RP RU SP Seite 37 Seite 38 Seite 38 Seite 38 Seite 39 Seite 39 Seite 40 Seite 41 Seite 41 Seite 41 Seite 42 Seite 42 Seite 43 Seite 43						
RER SX − RER DX Seite 30 Seite 30 Seite 30 Seite 30 Seite 30 Seite 32 Seite 33 Seite 34 Seite 35/36 ZK RP RU SP Seite 38 Seite 38 Seite 39 PR SU ST V Seite 40 Seite 41 Seite 41 Seite 42 Seite 42 Seite 42 Seite 43 Seite 43	2				88	2
Seite 30 Seite 30 Seite 30 Seite 30 Seite 30 Seite 30 Seite 32 Seite 32 Seite 33 Seite 34 Seite 34 Seite 35/36 RP RU SP Seite 37 Seite 38 Seite 38 Seite 39 PR SU ST V Seite 41 Seite 41 Seite 42 Seite 42 Seite 42 Seite 43 Seite 43 Seite 43					Selle 29	
VR OVR RO ZN/ZI Seite 32 Seite 33 Seite 34 Seite 35/36 ZK RP RU SP Seite 37 Seite 38 Seite 39 PR SU ST V Seite 40 Seite 41 Seite 41 Seite 42 FM FPI REG REZ Seite 42 Seite 42 Seite 43 Seite 43	3				© CRESA © CIAO	3
Seite 32 Seite 33 Seite 34 Seite 35/36 ZK RP RU SP Seite 37 Seite 38 Seite 38 Seite 39 SF V Seite 41 Seite 41 Seite 41 Seite 42 FM FPI REG REZ Seite 43 Seite 43						
ZK RP RU SP Seite 37 Seite 38 Seite 39 PR SU ST V Seite 40 Seite 41 Seite 41 Seite 42 FM FPI REG REZ Seite 42 Seite 42 Seite 43 Seite 43	4	VA			ZNZI	4
Seite 37 Seite 38 Seite 38 Seite 39 PR SU ST V Seite 40 Seite 41 Seite 41 Seite 42 FM FPI REG REZ 7 Seite 42 Seite 43 Seite 43						
PR SU ST V Seite 40 Seite 41 Seite 41 Seite 42 FM FPI REG REZ Seite 42 Seite 42 Seite 43 Seite 43	5					5
Seite 40 Seite 41 Seite 41 Seite 42 FM FPI REG REZ Seite 42 Seite 42 Seite 43 Seite 43						
FM FPI REG REZ Seite 42 Seite 43 Seite 43	6	200	0			6
Seite 42 Seite 43 Seite 43			Seite 41	Seite 41	Seite 42	
	7					
						-



KUNSTSTOFF SPANNELEMENTE LIEFERPROGRAMM PLASTIC TENSIONER RANGE

	Α	В	C	D	
	PX	PX-R	CEBX	CEPX	
1	Seite 45	Seite 45	Seite 46	Seite 46	1
2	XVR Seite 48	XOV Seite 49	XRO Seite 50	XZN/AZN Seite 51	2
3	XZK Seite 52	XRP Seite 53	XRU Seite 53	SN Seite 54	3
	Α	В	С	D	

ANWENDUNGEN/ APPLICATION RANGE

GUMMIFEDERELEMENTE / ELASTIC ELEMENTS

Bei den Gummifederelementen TECNIDEA CIDUE handelt es sich um mechanische Komponenten, die durch ihre Federungsfunktion als Schwingelementsupport, Druckstück, Entschleuniger und Schwingungsdämpfer verwendet werden. Sie werden auch als Schwingungsdämpfer zur Isolierung von schwingenden und akustischen Elementen zur Anwendung gebracht.

Alle **GUMMIFEDERELEMENTE** funktionieren durch das Rotationsprinzip von zwei zueinander in einem Winkel von 45° positionierten Elemente quadratischen Querschnitts, denen die Elastizität von vier Zylindern aus Naturkautschuk entgegen gesetzt wird, die zwischen beide Teile integriert werden.

Die Gesamtheit dieser Artikel arbeitet "durch Rotation", der erreichbare Maximalwinkel liegt, gegen und mit dem Uhrzeigersinn bei 30°.

Eine gemeinsame Charakteristik der **GUMMIFEDERELEMENTE** ist ihre Kapazität, die Schwingungen durch Nutzung der Eigenschaft der Elastomere (die elastische Hysterese) zu dämpfen. Durch diese entsteht ein Dämpfungsfaktor, der Schwingungen und Geräusche, die typisch für Anlagen mit Ketten- und Riementransmission sind, abschwächt.

Die Betriebstemperatur muss zwischen -40°C und +80°C liegen.

Die Produkte benötigen keine Schmierung und sind geräuschlos, da keine metallischen Teile interagieren. Da ein Verrutschen zwischen den zwei Teilen quadratischen Querschnitts durch die Reibung des Gummis, das auf die Oberflächen einwirkt, verhindert wird, ist der Einsatz von Axialdichtungssystemen erlässlich.

Die zur Herstellung unseres Gummis verwendete Mischung ist das Ergebnis eingehender Forschung, welche die Entwicklung eines hocheffizienten und qualitativ hochwertigen Produkts zulässt, das es uns erlaubt, unseren Kunden einen sehr haltbaren und effizienten Artikel anzubieten. Unser Gummi vereint Elastizität und Resistenz.

Die Komponenten aus Aluminium oder Metall, die zur Konzeption der in diesem Katalog vorgestellten **GUMMIFEDERELEMENTE** eingesetzt werden, sind ofenlackiert, um Korrosion oder Oxidation der Oberfläche vorzubeugen. Auf Anfrage ist es möglich, alle **GUMMIFEDERELEMENTE** mit einer Behandlung der Vernickelung (REG) oder Verzinkung (REZ) zur Verfügung zu stellen.

Auf Anfrage des Kunden konstruieren wir auch spezielle Produkte, kontaktieren Sie diesbezüglich gern unsere Vertriebsabteilung. Alle Größenangaben des vorliegenden Katalogs sind in Millimetern (mm) ausgedrückt.

TECNIDEA CIDUE elastic elements are mechanical components that are used as springs, oscillating supports, pressures, decelerators and shock absorbers. Moreover, they are also largely used as antivibration supports to isolate vibration and acoustic phenomena.

All these **ELASTIC ELEMENTS** take advantage of the same operating principle, based on the relative rotation of two square section elements, lodged one inside the other at 45° with respect to each other. This rotation is bucked by the elastic deformation of four natural rubber cylinders camed between the two elements. All these articles, for this reason, work "at rotation" and the maximum admissible angle that can be reached is 30°, both in the clockwise and in the anticlockwise.

The fundamental feature of the **ELASTIC ELEMENTS** is their ability to damp the vibrations, taking advantage of the elastomer property (the hysteresis principle) which creates a shock absorbing effect. This property allows to the elastomers to disperse under the heat form the kinetic energy of the vibrations, because of the high molecular friction of the rubber. The operating temperatures have to be included between -40°C and +80°C.

These products don't need lubrication and they are noiseless because there are no metal parts in contact with one another. Moreover they don't need an axial containment system because the sliding between the two square sections is prevented by the friction of the rubber working on the surfaces.

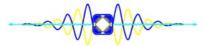
For the rubbers it is used a mix which is the result of a deep study that has allowed us to develop a product with an high efficiency and quality, in order to guarantee to our articles a long life and high perfomances. Our rubber, infact, unites in the same moment both the elasticity feature and the resistance one.

The metallic or the aluminium components used to realize the **ELASTIC COMPONENTS** of this catalogue, are covered by an oven painting in order to hinder possible corrosion phenomena or surface's oxidations. On request, all the **ELASTIC ELEMENTS** could be supplied with a zinc-plating or a nickel-plating treatment.

On specifical requests of our customers, we made also special products; anyway for further information You can contact our export department. All the dimensions of this catalogue are in millimeter (mm).

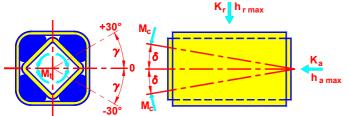
ANWENDUNGSBEISPIEL





GUMMIFEDERELEMENTE / ELASTIC ELEMENTS RANGE

	Α	В	С	D	E	
	AR-T	AR-P	AR-F	AS-P	AS-F	
1		A	O	- 0	0	1
	Seite 57	Seite 58	Seite 59	Seite 64	Seite 66	
2	AC-T	AC-P	AD-T	AD-P	SR	2
-	Seite 60	Seite 61	Seite 62	Seite 63-83	Seite 110	
3	sc	SB	BT-F	TB	TP-S	3
	Seite 110	Seite 111	Seite 73	Seite 75	Seite 77	
4	TP-F	TD-S	TD-F	GF O	DE	4
	Seite 78	Seite 80	Seite 81	Seite 87	Seite 94	
5	DE R Seite 95	DE-2L Seite 97	DE SYM Seite 99	DE H Seite 101	AN-D Seite 102	5
	AD-L	CR-P	BF	Y	AN	
6		M M	•	6		6
	Seite 104	Seite 108	Seite 106	Seite 116	Seite 118	
7	BM-T 40 Seite 123	BM-T 50 Seite 124	BM-T 70 Seite 125	BM-T 90 Seite 127	INOX-STAINLESS STEEL Seite 9	7
			C Selle 125	D Selle 127	Selle 9	
	Α	В	C	D	E	


ZULÄSSIGE BELASTUNG / ADMISSIBLE LOADS

Die untenstehende Tabelle verzeichnet die zulässige Maximalbelastung der Gummifederelemente TECNIDEA CIDUE. Die anschließende Grafik verdeutlicht die Orientierung der Lasten gemäß der radialen und axialen Richtung. Die Größen hr_{max} und ha_{max} machen die Verschiebung des internen im Verhältnis zum externen Profil in Entsprechung der Maximalbelastung aus. Der kardanische Moment \mathbf{M}_c ist der Drehmoment, der zur Erreichung einer Ungleichung der beiden Achsen entsprechend δ =1°eingerichtet werden muss.

Der Torsionsmoment \mathbf{M}_t ist der Drehmoment, welcher die Rotation des zentralen Stifts kontrastiert und ist die zentrale Charakteristik, die bei der Entwicklungsphase berücksichtigt werden muss.

The maximum admissible loads of the TECNIDEA CIDUE elastic elements are shown in the lower table. The following table shows as the loads are positioned according the radial and the axial directions. The hr_{max} and ha_{max} values identify the relative movement of the internal profile with respect to the external one in correspondence to the maximum load. The M_c cardanic moment is the couple that has to be imposed to obtain a cocking of the two axis equal to $\delta = 1^\circ$.

The M_t torque moment is the couple that hinded the rotation of the central pin and that is the main feature You have to consider in the planning phase.

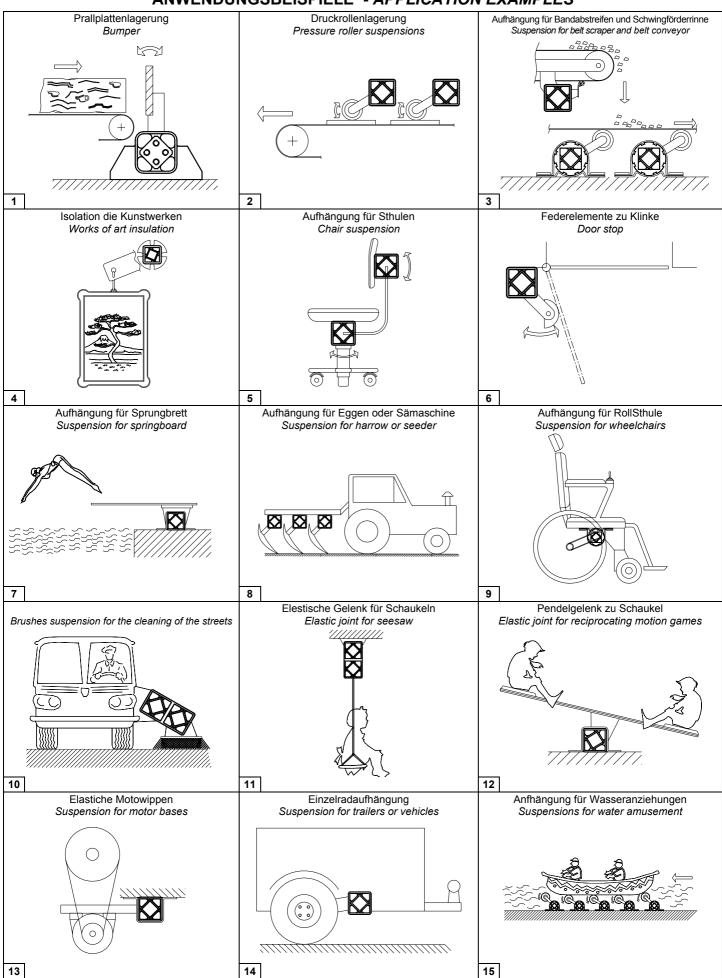
hr_{max}: Maximalverschiebung in radiale Richtung / maximum radial set [mm] ha_{max}: Maximalverschiebung in axiale Richtung / maximum axial set [mm]

Kr : Zulässige Maximalbelastung in radiale Richtung / max radial admissible stress [N]

K_a: Zulässige Maximalbelastung in axiale Richtung / max admissible axial stress [N]

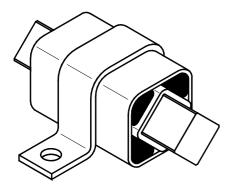
M_c: kardanischer Moment *I cardanic torque* [Nm]

Mt : durch das Element erzeugter Torsionsmoment torque [Nm]


: Ungleichungswinkel zwischen dem internen und dem externen Körper / cocking angle between outside and inside body [°]

Тур			ler Reiz	Axiale Axial s		0.4	Torsionsbelastung M_t in Nm mit $\star \gamma$ Torque M_t in Nm at $\star \gamma$								
Туре		_				M_{c} (δ =1°)				•					
		hr _{max}	K _r	ha _{max}	Ka		5°	10°	15°	20°	25°	30°			
10 x	20	0.25	190	0.25	58	0.37	0.3	8.0	1.3	1.9	2.8	3.8			
10 x	30	0.25	320	0.25	76	1.00	0.4	1.2	2.0	2.9	4.2	5.7			
10 x	50	0.25	570	0.25	144	5.36	0.7	2.0	3.3	4.8	7.0	9.5			
20 x	25	0.25	192	0.25	68	0.57	0.7	1.6	2.5	3.8	5.4	7.8			
20 x	40	0.25	285	0.25	97	1.80	1.1	2.5	4.0	6.1	8.7	12.5			
20 x	60	0.25	478	0.25	155	5.30	1.6	3.8	6.0	9.2	13.0	18.8			
30 x	30	0.25	380	0.25	75	1.50	1.8	4.2	7.0	10.5	14.3	19.5			
30 x	50	0.25	665	0.25	152	6.50	3.0	7.0	11.7	17.5	23.8	32.5			
30 x	80	0.25	762	0.25	288	26.80	4.8	11.2	18.9	28.0	38.2	52.0			
40 x	40	0.50	763	0.50	187	3.70	4.7	10.2	16.5	25.6	37.6	54.2			
40 x	60	0.50	1230	0.50	288	10.80	6.8	15.3	24.8	38.4	56.4	81.3			
40 x	100	0.50	2280	0.50	570	45.70	11.8	25.5	41.2	64.0	94.0	135.5			
50 x	60	0.50	952	0.50	288	10.70	12.4	29.0	48.2	74.0	107.5	153.5			
50 x	80	0.50	1910	0.50	478	23.60	16.5	38.7	64.3	98.7	143.4	204.7			
50 x	120	0.50	2852	0.50	575	72.20	24.7	58.0	96.4	148.0	215.0	307.0			
60 x	80	0.50	1800	0.50	534	26.80	26.4	60.0	98.6	152.4	210.5	302.0			
60 x	100	0.50	2855	0.50	662	51.00	33.0	75.0	123.2	190.5	263.1	377.5			
60 x	150	0.50	4565	0.50	953	135.00	49.5	112.5	184.8	285.8	394.6	566.3			
70 x	120	0.50	2665	0.50	760	47.00	50.0	121.0	225.0	356.0	513.0	741.0			
70 x	200	0.50	5985	0.50	1040	238.00	100.0	237.0	428.0	670.0	963.0	1378.0			
70 x	300	0.50	8170	0.50	2095	1160.00	147.0	350.0	630.0	990.0	1431.0	2052.0			
80 x	150	1.00	5130	1.00	1525	85.50	70.0	160.0	283.0	440.0	668.0	955.0			
80 x	200	1.00	6840	1.00	2050	210.00	93.0	213.0	378.0	586.0	890.0	1274.0			
80 x	300	1.00	8935	1.00	3045	850.00	140.0	320.0	566.0	880.0	1336.0	1910.0			
90 x	200	1.00	8547	1.00	2050	270.00	134.0	360.0	618.0	985.0	1415.0	2015.0			
90 x	300	1.00	11396	1.00	3420	1150.00	201.0	540.0	927.0	1478.0	2122.0	3022.0			
90 x	400	1.00	13305	1.00	3850	2060.00	268.0	720.0	1236.0	1970.0	2830.0	4030.0			
100 x	200	1.00	9685	1.00	2380	648.00	192.0	480.0	806.0	1230.0	1800.0	2570.0			
100 x	300	1.00	14250	1.00	2650	1425.00	288.0	720.0	1209.0	1845.0	2700.0	3855.0			
100 x	400	1.00	18055	1.00	4465	4380.00	384.0	960.0	1612.0	2460.0	3600.0	5140.0			
110 x	250	1.00	14253	1.00	3037	1150.00	385.0	1020.0	1720.0	2680.0	3890.0	5990.0			
110 x	400	1.00	33255	1.00	5510	4090.00	616.0		2752.0	4288.0	6224.0	9584.0			
110 x	500	1.00	36050	1.00	7130	7650.00	770.0	2040.0	3440.0	5360.0	7780.0	11980.			

ANWENDUNGSBEISPIELE - APPLICATION EXAMPLES



Gummifederelement VIB Typ: AR-T / Elastic Components VIB Type: AR-T

	уре	Code-Nr. Code no.	Α	B +0,25 +0,00	D	E	L	L1 +0,0 -0,3			oment Q		•		Gewicht Weight in kg
									5°	10°	15°	20°	25°	30°	
AR-T		RE020010	11	8	20 +0,10	2,5	20	25	0,3	0,8	1,3	1,9	2,8	3,8	
		RE020011	11	8	20 +0,10 - 0,20	2,5	30	35	0,4	1,2	2,0	2,9	4,2	5,7	0,06
		RE020012	11	8	20 +0,10 - 0,20	2,5	50	55	0,7	2,0	3,3	4,8	7,0	9,5	
AR-T	20 x 25	RE020015	15	11	27 +0,20	2,5	25	30	0,7	1,6	2,5	3,8	5,4	7,8	
		RE020016	15	11	27 +0,20	2,5	40	45	1,1	2,5	4,0	6,1	8,7	12,5	
AR-T		RE020017	15	11	27 +0,20	2,5	60	65	1,6	3,8	6,0	9,2	13,0	18,8	
AR-T	30 x 30	RE020020	18	12	32 +0,10	2,5	30	35	1,8	4,2	7,0	10,5	14,3	19,5	
AR-T		RE020021	18	12	32 +0,10	2,5	50	55	3,0	7,0	11,7	17,5	23,8	32,5	
AR-T	30 x 80	RE020022	18	12	32 +0,10	2,5	80	85	4,8	11,2	18,9	28,0	38,2	52,0	
		RE020025	27	22	45 +0,20	2,5	40	45	4,7	10,2	16,5	25,6	37,6	54,2	
		RE020026	27	22	45 +0,20	2,5	60	65	6,8	15,3	24,8	38,4	56,4	81,3	
AR-T	40 ×100	RE020027	27	22	45 +0,20	2,5	100	105	11,8	25,5	41,2	64,0	94,0	135,5	
		RE020030	38	30	60 +0,15	5	60	70	12,4	29,0	48,2	74,0	107,5	153,5	·
AR-T	50 x 80	RE020031	38	30	60 +0,15	5	80	90	16,5	38,7	64,3	98,7	143,4	204,7	
AR-T	50 x120	RE020032	38	30	60 +0,15	5	120	130	24,7	58,0	96,4	148,0	215,0	307,0	
		RE020035	45	35	72 +0,15	5	80	90	26,4	60,0	98,6	152,4	210,5	302,0	
		RE020036	45	35	72 +0,15	5	100	110	33,0	75,0	123,2	190,5	263,1	377,5	
		RE020037	45	35	72 +0,15	5	150	160	49,5	112,5	184,8	285,8	394,6	566,3	
AR-T	70 x120	RE020040	50	40	78 -0,30	5	120	130	50,0	121,0	225,0	356,0	513,0	741,0	, -
		RE020041	50	40	78 -0,30	5	200	210	100,0	237,0	428,0	670,0	963,0	•	
AR-T	70 ×300	RE020042	50	40	78 +0,15	5	300	310	147,0	350,0	630,0	990,0	1431,02	2052,0	5,19

Typ **AR-T** mit Spanneisen **SR**Type **AR-T** with **SR** clamp

MATERIALIEN

Der externe Körper und das interne Rohr von quadratischem Querschnitt sind aus Stahl.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Rohr ist elektrolytisch verzinkt.

FIXIERUNG

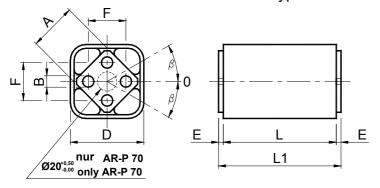
Die interne Verkopplung erfolgt mittels eines kaltgezogene Pults, der sich durch leicht abgerundete Ecken auszeichnet, oder durch Reibung mit einem passierenden Bolzen. Für die letztgenannte Lösung empfehlen wir den ausschließlichen Gebrauch von Größen 10-20-30. Zum besseren Verständnis sind die Toleranzbereiche des internen Rohrs in der oben dargestellten Tabelle angegeben. Die Verankerung des externen Quaders kann mittels eines Spanneisens vom Typ SR erreicht werden, wie die nebenstehende Zeichnung verdeutlicht.

MATERIAL

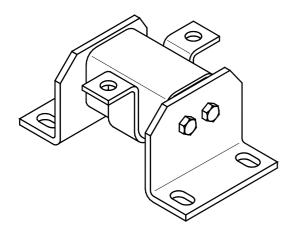
The external body and the inner square section tube are made of steel.

TREATMENTS

The external body is oven-painted while the inner square is galvanized.


FITTING

Internal coupling is obtained with square-drawn section with slightly smoothed angles, or by friction using a passing screw but in this case we recommend to use only 10-20-30 sizes. The tolerances of the internal channel are listed in the above table. The external square structure can be fixed by the SR clamp as illustrated in the side drawing.



Gummifederelement VIB Typ: AR-P / Elastic Components VIB Type: AR-P

	yp ype		Code-Nr. Code no.	A	В	D	E	F	L	L1 +0,0 -0,3	Drehmoment Q in Nm bei ≮ β Torque Q in Nm at ≮ β						Gewicht Weight
											5°	10°	15°	20°	25°	30°	in kg
AR-P	20 x	25	RE020065	15		27 +0,20 - 0,10			25	30	0,7	1,6	2,5	3,8	5,4	7,8	0,07
AR-P	20 x	40	RE020066	15		27 +0,20 - 0,10			40	45	1,1	2,5	4,0	6,1	8,7	12,5	0,11
AR-P	20 x	60	RE020067	15		27 +0,20 - 0,10			60	65	1,6	3,8	6,0	9,2	13,0	18,8	0,17
AR-P	30 x	30	RE020070	18		32 +0,10 - 0,20			30	35	1,8	4,2	7,0	10,5	14,3	19,5	•
AR-P	30 x		RE020071			$32^{+0,10}_{-0,20}$			50	55	3,0	7,0	11,7	17,5	23,8	32,5	
AR-P	30 x	80	RE020072	18		$32 {}^{+0,10}_{-0,20}$			80	85	4,8	11,2	18,9	28,0	38,2	52,0	
AR-P	40 x		RE020075			45 +0,20			40	45	4,7	10,2	16,5	25,6	37,6	54,2	0,28
AR-P	40 x		RE020076			45 +0,20			60	65	6,8	15,3	24,8	38,4	56,4	81,3	
AR-P	40 x	100	RE020077	27		45 +0,20			100	105	11,8	25,5	41,2	64,0	94,0	135,5	
AR-P	50 x	60	RE020080	38		60 +0,15	5	25 ±0,4	60	70	12,4	29,0	48,2	74,0	107,5	153,5	0,65
AR-P	50 x		RE020081			60 ^{+0,15} _{-0,30}	5	25 ±0,4	80	90	16,5	38,7	64,3	98,7	143,4	204,7	0,84
AR-P	50 x	120	RE020082	38		60 +0,15	5	25 ±0,4	120	130	24,7	58,0	96,4	148,0	215,0	307,0	
AR-P	60 x		RE020085		12+0,50	$72^{+0,15}_{-0,30}$	5	35 ±0,5	80	90	26,4	60,0	98,6	152,4	210,5	302,0	
AR-P			RE020086		12+0,50	72 +0,15 - 0,30	5	35 ±0,5	100	110	33,0	75,0	123,2	190,5	263,1	377,5	
AR-P			RE020087		$12^{+0,50}_{+0,00}$	72 +0,15	5	35 ±0,5	150	160	49,5	112,5	184,8	285,8	394,6	566,3	
AR-P			RE020090				5	40 ±0,5	120	130	50,0	121,0	225,0	356,0	513,0	741,0	
AR-P			RE020091				5		200	210	100,0	237,0	428,0	670,0		1378,0	
AR-P	70 x	300	RE020092	50	M12x40	78 - 0,30	5	40 ±0,5	300	310	147,0	350,0	630,0	990,0	1431,0	2052,0	4,58

Typ **AR-P** mit Spanneisen **SR** und **SB** Type **AR-P** with **SR** and **SB** clamp

MATERIALIEN

Der externe Körper besteht aus Stahl, das interne Pult ist ein Aluminiumprofil.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Pult mit einem RAL Lack überzogen.

FIXIERUNG

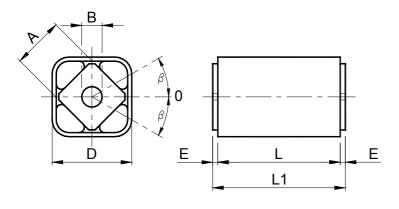
Die Fixierung auf dem zentralen Bolzen wird mit Schrauben vorgenommen, auf diese Weise erhält man eine sichere Montage ohne Spiel. Zum Einsatz gebracht werden können auch Spanneisen der Typen **SB** und **SR**, wie das nebenstehende Beispiel verdeutlicht. Dieses Produkt eignet sich besonders für alternierende oder schwingende Bewegungen.

MATERIA

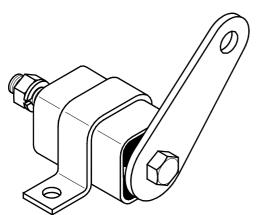
The external body is made of steel while the inner square is made of light alloy profile.

TREATMENT

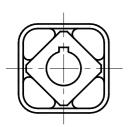
The external body is oven-painted while the inner square is covered with a RAL varnish.


FITTING

The central pin is fixed with screws for more stable and safe assembly. SB and SR-type clamps can also be used (see side example). This product is ideal for alternating and oscillating movements.



Gummifederelement VIB Typ: AR-F / Elastic Components VIB Type: AR-F



Тур <i>Тур</i> е	Code-Nr. Code no.	A	В	D	E	L	L1 +0,0 -0,3			oment Q		•		Gewicht Weight in kg
								5°	10°	15°	20°	25°	30°	iii kg
AR-F 20 x 25	RE020115	15		27 +0,20	2,5	25	30	0,7	1,6	2,5	3,8	5,4	7,8	0,07
AR-F 20 x 40	RE020116	15		27 +0,20	2,5	40	45	1,1	2,5	4,0	6,1	8,7	12,5	0,11
AR-F 20 x 60	RE020117	15		27 +0,20	2,5	60	65	1,6	3,8	6,0	9,2	13,0	18,8	0,17
AR-F 30 x 30	RE020120	18		32 +0,10	2,5	30	35	1,8	4,2	7,0	10,5	14,3	19,5	0,11
AR-F 30 x 50	RE020121	18		32 +0,10	2,5	50	55	3,0	7,0	11,7	17,5	23,8	32,5	0,18
AR-F 30 x 80	RE020122	18		32 +0,10	2,5	80	85	4,8	11,2	18,9	28,0	38,2	52,0	0,28
AR-F 40 x 40	RE020125	27		45 +0,20	2,5	40	45	4,7	10,2	16,5	25,6	37,6	54,2	0,28
AR-F 40 x 60	RE020126	27		45 +0,20	2,5	60	65	6,8	15,3	24,8	38,4	56,4	81,3	0,39
AR-F 40 x 100	RE020127	27	16 +0,50	45 +0,20	2,5	100	105	11,8	25,5	41,2	64,0	94,0	135,5	0,65
AR-F 50 x 60	RE020130	38	20 +0,50 +0,20	60 +0,15	5	60	70	12,4	29,0	48,2	74,0	107,5	153,5	0,65
AR-F 50 x 80	RE020131	38		60 +0,15	5	80	90	16,5	38,7	64,3	98,7	143,4	204,7	0,84
AR-F 50 x 120	RE020132	38	20 +0,50 +0,20	60 +0,15	5	120	130	24,7	58,0	96,4	148,0	215,0	307,0	2,10
AR-F 60 x 80	RE020135	45		72 +0,15	5	80	90	26,4	60,0	98,6	152,4	210,5	302,0	1,12
AR-F 60 x 100	RE020136	45		72 +0,15	5	100	110	33,0	75,0	123,2	190,5	263,1	377,5	1,25
AR-F 70 x 120	RE020140	50	30 +0,50	78 -0,30	5	120	130	50,0	121,0	225,0	356,0	513,0	741,0	1,97
AR-F 70 x 200	RE020141	50	30 +0,50 +0,20	78 +0,15	5	200	210	100,0	237,0	428,0	670,0	963,0	1378,0	3,35

Typ AR-F mit Spanneisen SR / Type AR-F with SR clamp

MATERIALIEN

Der externe Körper besteht aus Stahl, das interne Pult ist ein Aluminiumprofil.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Pult mit einem RAL Lack überzogen.

FIXIERUNG

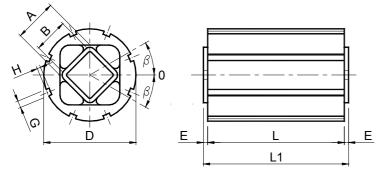
Der Anschluss entsteht durch Reibung mittels eines passierenden Bolzens. Diese Lösung ermöglicht eine schnelle Verkopplung mit einem Hebel mit einer bestimmbaren Position von bis zu 360°. Wir empfehlen, besondere Aufmerksamkeit auf hohe Belastungen zu legen, welche Rotationen von über ±10° bewirken; in diesem Fall können wir das Produkt auf Anfrage in einer Version liefern, die mit einer Öffnung für eine Passfeder gemäß der UNI-Norm 6604 hergestellt wird.

MATERIAL

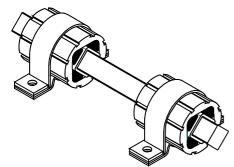
The external body is made of steel while the inner square is made of light alloy profile.

TREATMENTS

The external body is oven-painted while the inner square is covered with a RAL varnish.


FITTING

Connection is obtained by friction through a passing bolt. As a result, the one-lever coupling can rapidly select and reach a position over 360°. We recommend that you pay special attention to the high loads that need rotations over $\pm 10^\circ$. In this case we can supply the product with a hole to house a tongue in compliance with the UNI 6604 norms.



Gummifederelement VIB Typ: AC-T / Elastic Components VIB Type: AC-T

Тур	Code-Nr.	Α	B +0,25	D	Е	G	н	L	L1 +0,0 -0,3	Drehmoment Q in Nm bei ≮ β Torque Q in Nm at ≮ β						Gewicht Weight
Туре	Code no.		10							F 0				'	200	in kg
				+0.20		<u> </u>	<u> </u>			5°	10°	15°	20°	25°	30°	
AC-T 10 x 20		11	8	28+0,30			2,5	20	25	0,3	0,8	1,3	1,9	2,8	3,8	
AC-T 10 x 30		11	8	28+0,30			2,5	30	35	0,4	1,2	2,0	2,9	4,2	5,7	0,04
AC-T 10 x 50	RE020162	11	8	-,	2,5	4	2,5	50	55	0,7	2,0	3,3	4,8	7,0	9,5	0,06
AC-T 20 x 25	RE020165	15	11		2,5	5	2,5	25	30	0,7	1,6	2,5	3,8	5,4	7,8	0,05
AC-T 20 x 40	RE020166	15	11		2,5	5	2,5	40	45	1,1	2,5	4,0	6,1	8,7	12,5	0,09
AC-T 20 x 60	RE020167	15	11	36+0,30	2,5	5	2,5	60	65	1,6	3,8	6,0	9,2	13,0	18,8	0,12
AC-T 30 x 30	RE020170	18	12	45+0,00	2,5	5	2,5	30	35	1,8	4,2	7,0	10,5	14,3	19,5	0,12
AC-T 30 x 50	RE020171	18	12	45+0,40	2,5	5	2,5	50	55	3,0	7,0	11,7	17,5	23,8	32,5	0,17
AC-T 30 x 80	RE020172	18	12	$45^{+0,40}_{+0,00}$	2,5	5	2,5	80	85	4,8	11,2	18,9	28,0	38,2	52,0	0,31
AC-T 40 × 40	RE020175	27	22	62+0,00	2,5	6	3	40	45	4,7	10,2	16,5	25,6	37,6	54,2	0,25
AC-T 40 x 60	RE020176	27	22		2,5	6	3	60	65	6,8	15,3	24,8	38,4	56,4	81,3	0,37
AC-T 40 × 100	RE020177	27	22	62+0,50	2,5	6	3	100	105	11,8	25,5	41,2	64,0	94,0	135,5	0,62
AC-T 50 x 60	RE020180	38	30	80+0,60	5	7	3,5	60	70	12,4	29,0	48,2	74,0	107,5	153,5	0,67
AC-T 50 x 80	RE020181	38	30	80+0,60	5	7	3,5	80	90	16,5	38,7	64,3	98,7	143,4	204,7	0,88
AC-T 50 x 120	RE020182	38	30	80+0,60	5	7	3,5	120	130	24,7	58,0	96,4	148,0	215,0	307,0	1,31
AC-T 60 x 80	RE020185	45	35	95+0,80	5	8	4	80	90	26,4	60,0	98,6	152,4	210,5	302,0	1,29
AC-T 60 x 100	RE020186	45	35	95+0,80	5	8	4	100	110	33,0	75,0	123,2	190,5	263,1	377,5	-
AC-T 60 x 150	RE020187	45	35	95+0,80	5	8	4	150	160	49,5	112,5	184,8	285,8	394,6	566,3	
AC-T 70 ×120		50	40	108+1,00	5	8	4	120	130	50,0	121,0	225,0	356,0	513,0	741,0	2,42
AC-T 70 × 200		50	40	108+1,00	5	8	4	200	210	100,0	237,0	428,0	670,0		1378,0	
AC-T 70 × 300		50	40	108+1,00	5	8	4	300	310	147.0	350.0	630,0	•	1431.0		

Type **AC-T** mit Spanneisen **SC**Type **AC-T** with **SC** clamp

MATERIALIEN

Der externe Körper ist ein Aluminiumprofil, das interne Rohr von quadratischem Querschnitt besteht aus Stahl.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Rohr ist verzinkt.

FIXIERUNG

Die interne Verkopplung erfolgt mittels eines kaltgezogenen Quaders, der sich durch leicht abgerundete Ecken auszeichnet, oder durch Reibung mit einem passierenden Bolzen. Für die letztgenannte Lösung empfehlen wir den ausschließlichen Gebrauch von Größen 10-20-30. Zum besseren Verständnis sind die Toleranzbereiche des internen Rohrs in der oben dargestellten Tabelle angegeben. Für die Fixierung des externen Elements können auch Spanneisen vom Typ SC verwendet werden. Die Rillen auf dem externen Körper dienen zur Vorbeladung des elastischen Elements mittels des Gebrauchs eines Hakenschlüssels.

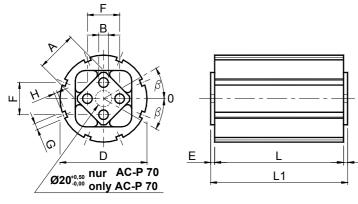
MATERIALS

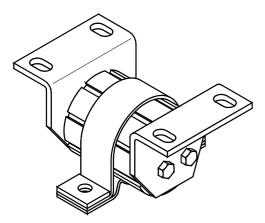
The external body is made of light alloy profile while the square inner section tube is made of steel

TREATMENTS

The external body is oven-painted while the inner square is galvanized.

FITTING


Internal coupling is obtained with square-drawn section with slightly smoothed angles, or by friction using a passing bolt but in this case we recommend to use only 10-20-30 sizes. The tolerances of the internal channel are listed in the above table. The external structure can be fixed by the SC clamp. The grooves on the outer body help pre-load the elastic element by means of a pin wrench.


Gummifederelement VIB Typ: AC-P / Elastic Components VIB Type: AC-P

Ε

Typ Type		Code-Nr. Code no.	Α	В	D	E	F	G	Н	L	L1 ^{+0,0}			oment C rque Q ii		•		Gewicht Weight	
	,											.,.	5°	10°	15°	20°	25°	30°	in kg
AC-P	20x	25	RE020215	15	5 ^{+0,50}			10 ±0,2		2,5	25	30	0,7	1,6	2,5	3,8	5,4	7,8	0,05
AC-P	20x	40	RE020216	15	5 ^{+0,50} _{+0,00}	36+0,30	2,5	10 ±0,2	5	2,5	40	45	1,1	2,5	4,0	6,1	8,7	12,5	0,09
AC-P	20x	60	RE020217	15	5+0,50	$36^{+0,30}_{+0,00}$	2,5	10 ±0,2	5	2,5	60	65	1,6	3,8	6,0	9,2	13,0	18,8	0,12
AC-P	30x	30	RE020220	18	6+0,50	45+0,40	2,5	12 ±0,3	5	2,5	30	35	1,8	4,2	7,0	10,5	14,3	19,5	0,12
AC-P	30x	50	RE020221	18	$6^{+0,50}_{+0,00}$	45+0,40	2,5	12 ±0,3	5	2,5	50	55	3,0	7,0	11,7	17,5	23,8	32,5	0,17
AC-P	30x	80	RE020222	18	6+0,50	45+0,40	2,5	12 ±0,3	5	2,5	80	85	4,8	11,2	18,9	28,0	38,2	52,0	0,31
AC-P	40x	40	RE020225	27	8+0,50	62+0,50	2,5	20 ±0,4	6	3	40	45	4,7	10,2	16,5	25,6	37,6	54,2	0,25
AC-P	40x	60	RE020226	27	8+0,50	62+0,50	2,5	20 ±0,4	6	3	60	65	6,8	15,3	24,8	38,4	56,4	81,3	0,37
AC-P	40x	100	RE020227	27	8+0,50	62+0,50	2,5	$20{\scriptstyle~\pm 0,4}$	6	3	100	105	11,8	25,5	41,2	64,0	94,0	135,5	0,62
AC-P	50x	60	RE020230	38	10+0,50	80+0,60	5	25 ±0,4	7	3,5	60	70	12,4	29,0	48,2	74,0	107,5	153,5	0,67
AC-P	50x	80	RE020231	38	10+0,50	80+0,60	5	25 ±0,4	7	3,5	80	90	16,5	38,7	64,3	98,7	143,4	204,7	0,88
AC-P	50x	120	RE020232	38	10+0,50	80+0,60	5	25 ±0,4	7	3,5	120	130	24,7	58,0	96,4	148,0	215,0	307,0	1,31
AC-P	60x	80	RE020235	45	12+0,50	95+0,80	5	35 ±0,5	8	4	80	90	26,4	60,0	98,6	152,4	210,5	302,0	1,29
AC-P	60x	100	RE020236	45	12+0,50	95+0,80	5	35 ±0,5	8	4	100	110	33,0	75,0	123,2	190,5	263,1	377,5	1,54
AC-P	60x	150	RE020237	45	$12^{+0,50}_{+0,00}$	95+0,80	5	35 ±0,5	8	4	150	160	49,5	112,5	184,8	285,8	394,6	566,3	2,32
AC-P	70x	120	RE020240	50	M12x40	108+1,00	5	40 ±0,5	8	4	120	130	50,0	121,0	225,0	356,0	513,0	741,0	2,42
AC-P	70x	200	RE020241	50	M12x40	108+1,00	5	40 ±0,5	8	4	200	210	100,0	237,0	428,0	670,0	963,0	1378,0	4,11
AC-P	70x	300	RE020242	50	M12x40	108+1,00	5	40 ±0,5	8	4	300	310	147.0	350.0	630,0	990.0	1431,02	2052.0	6,32

Type **AC-P** mit Spanneisen **SC** und **SB** Type **AC-P** with **SC** and **SB** clamps

MATERIALIEN

Der externe Körper und das interne Pult sind aus Aluminiumprofil.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Pult mit einem RAL Lack überzogen.

FIXIERUNG

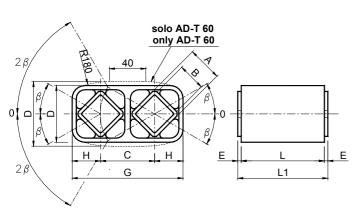
Die Fixierung auf dem zentralen Bolzen wird mit Schrauben vorgenommen, auf diese Weise erhält man eine sichere Montage ohne Spiel. Zur Montage können ebenso Spanneisen der Typen **SB** oder **SY** zum Einsatz gebracht werden. Für die Fixierung des externen Elements können auch Spanneisen vom Typ **SC** verwendet werden. Die Rillen auf dem externen Körper dienen zur Vorbeladung des elastischen Elements mittels des Gebrauchs eines Hakenschlüssels.

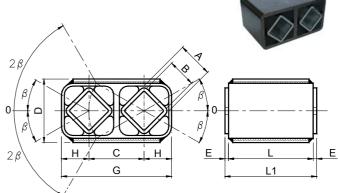
MATERIALS

The external body and the inner square are made of light alloy profile.

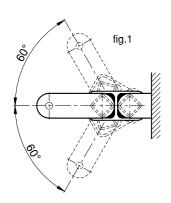
TREATMENTS

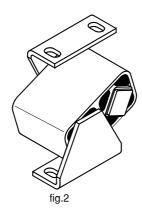
The external body is oven-painted while the inner square is covered with a RAL varnish.


FITTING


The central pin is fixed with screws for more stable and safe assembly. For the assembling operation, SB and SY-type brackets can also be used. The external element can be fixed with the SC clamps. The grooves on the outer body help pre-load the elastic element by means of a sector key.

Gummifederlement VIB Tipo: AD-T / Elastic Components VIB Type: AD-T





GRÖßE 20, 30, 40, 50 e 60 / SIZES 20, 30, 40, 50 and 60

GRÖßE 70 / SIZE 70

	Тур <i>Тур</i> е		Cod. N°	Α	B +0,25	С	D	E	G		н	L	L1 ^{+0,0} _{-0,3}				Q in Nm in Nm a	n bei≮β t≮β		Gew. Weight
														5°	10°	15°	20°	25°	30°	in kg
AD-1	20 x	25	RE020265	15	11	25,5	27±0,15	2,5	52,5	±0,20	13,5	25	30	0,7	1,6	2,5	3,8	5,4	7,8	0,11
	20 x	40	RE020266	15	11	25,5	$27^{\pm0,15}$	2,5	52,5	±0,20	13,5	40	45	1,1	2,5	4,0	6,1	8,7	12,5	0,15
AD-1	Г 20 х	60	RE020267	15	11	25,5	$27{\scriptstyle \pm 0,15}$	2,5	52,5		,	60	65	1,6	3,8	6,0	9,2	13,0	18,8	0,22
AD-1	Г 30 х	30	RE020270	18	12	31	$35^{\pm0,15}$	2,5	66	+0,20 +0,00		30	35	1,8	4,2	7,0	10,5	14,3	19,5	0,18
AD-1	Г 30 х	50	RE020271	18	12	31	$35^{\pm0,15}$	2,5	66	+0,20 +0,00			55	3,0	7,0	11,7	17,5	23,8	32,5	0,31
AD-1	30 x	80	RE020272	18	12	31	35±0,15	2,5	66	+0,20 +0,00	17,5	80	85	4,8	11,2	18,9	28,0	38,2	52,0	0,47
AD-1	Г 40 х	40	RE020275	27	22	44	$45{\scriptstyle \pm 0,15}$	2,5	89	+0,20 +0,00	22,5	40	45	4,7	10,2	16,5	25,6	37,6	54,2	0,37
AD-1	Г 40 х	60	RE020276	27	22	44	$45^{\pm0,15}$	2,5	89		22,5	60	65	6,8	15,3	24,8	38,4	56,4	81,3	0,54
AD-1	7 40 x 1	100	RE020277	27	22	44	$45^{\pm0,15}$	2,5	89	+0,20 +0,00	22,5	100	105	11,8	25,5	41,2	64,0	94,0	135,5	0,89
AD-1	Г 50 х	60	RE020280	38	30	60	$68^{\pm0,20}$	5	120	+0,30 +0,00	30	60	70	12,4	29,0	48,2	74,0	107,5	153,5	1,07
AD-1	Г 50 х	80	RE020281	38	30	60	$68^{\pm0,20}$	5	120	+0,30 +0,00	30	80	90	16,5	38,7	64,3	98,7	143,4	204,7	1,39
AD-1	50 x '	120	RE020282	38	30	60	$68^{\pm0,20}$	5	120	+0,30 +0,00	30	120	130	24,7	58,0	96,4	148,0	215,0	307,0	2,07
AD-1	Г 60 х	80	RE020285	45	35	73	$82^{\pm0,20}$	5	145	+0,40 +0,00	36	80	90	26,4	60,0	98,6	152,4	210,5	302,0	2,07
AD-1	Г 60 х '	100	RE020286	45	35	73	$82^{\pm0,20}$	5	145	+0,40 +0,00	36	100	110	33,0	75,0	123,2	190,5	263,1	377,5	2,55
AD-1	Г 60 х '	150	RE020287	45	35	73	$82^{\pm0,20}$	5	145	+0,40 +0,00	36	150	160	49,5	112,5	184,8	285,8	394,6	566,3	3,82
AD-1	70 x	120	RE020290	50	40	78	90±0,20	5	156	+0,40 +0,00	39	120	130	50,0	121,0	225,0	356,0	513,0	741,0	6,21

MATERIALIEN

Von Größe 20 bis zu Größe 60 ist der externe Körper ein Aluminiumprofil, die internen Rohren von quadratischem Querschnitt bestehen aus Stahl. In der Größe 70 bestehen der externe Körper und die internen Rohre von quadratischem Querschnitt aus Stahl.

BEHANDLUNG

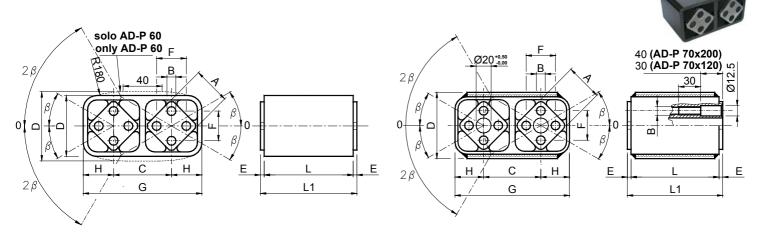
Der externe Körper ist ofenlackiert, die internen Rohre sind verzinkt.

Ein Vorteil des Elements **AD-T** ist die Möglichkeit, im Vergleich zu den oben genannten Artikeln, mit einem doppelten Spannwinkel operieren zu können. Lässt man die internen Pulte seriell agieren, kann eine Maximalrotation von bis zu 60° (Abb.1) erreicht werden. In Kombination mit speziellen Spanneisen kann es auch als elastische Aufhängung (Abb.2) verwendet werden

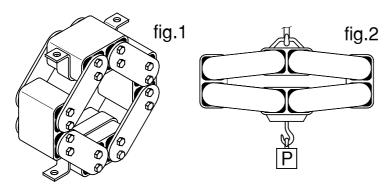
MATERIAL

From size 20 to 60 external body is made out of light alloy profile while inner squares are made of steel. Size 70 external body and inner squares are made of steel The external body and the inner square section tubes are made of steel.

TREATMENTS


The external body is oven-painted while the inner tubes are galvanized.

One advantage of the AD-T element is that a double working angle can be obtained with respect to the products described above. In fact, due to the inner square element arrangement, a rotation of 60° can be achieved (fig.1). Combined with special brackets, they can be used as elastic suspensions (fig.2).


Gummifederlement VIB Tipo: AD-P / Elastic Components VIB Type: AD-P

GRÖßE 20, 30, 40, 50 e 60 / SIZES 20, 30, 40, 50 and 60

GRÖßE 70 / SIZE 70

	Тур <i>Тур</i> е		Cod. N°	A	В	С	D	E	F	G	н	L	L1 ^{+0,0} _{-0,3}				Q in Nm in Nm a		β	Gew. Weight in kg
	-													5°	10°	15°	20°	25°	30°	9
AD-P	20 x	25	RE020315	15	$5^{+0,50}_{+0,00}$	25,5	27 ±0,15	2,5	10 ±0,2	$52,5\pm0,20$	13,5	25	30	0,7	1,6	2,5	3,8	5,4	7,8	0,09
AD-P	20 x	40	RE020316	15	5 ^{+0,50} _{+0,00}	25,5	27 ±0,15	2,5	10 ±0,2	52,5 ±0,20	13,5	40	45	1,1	2,5	4,0	6,1	8,7	12,5	0,25
AD-P	20 x	60	RE020317	15	$5^{+0,50}_{+0,00}$	25,5	27 ±0,15	2,5	10 ±0,2	52,5 ±0,20		60	65	1,6	3,8	6,0	9,2	13,0	18,8	0,35
AD-P	30 x	30	RE020320	18	6+0,50	31	35 ±0,15	2,5	12 ±0,3	66 +0,20			35	1,8	4,2	7,0	10,5	14,3	19,5	0,16
AD-P	30 x	50	RE020321	18		31	35 ±0,15	2,5	12 ±0,3		17,5		55	3,0	7,0	11,7	17,5	23,8	32,5	0,25
AD-P	30 x	80	RE020322	18	6+0,50	31	35 ±0,15	2,5	12 ±0,3		17,5		85	4,8	11,2	18,9	28,0	38,2	52,0	0,35
AD-P	40 x	40	RE020325	27	8+0,50	44	45 ±0,15	2,5	20 ±0,4		22,5		45	4,7	10,2	16,5	25,6	37,6	54,2	0,38
AD-P	40 x	60	RE020326	27	8+0,50	44	45 ±0,15	2,5	20 ±0,4		22,5		65	6,8	15,3	24,8	38,4	56,4	81,3	0,54
AD-P	40 x	100	RE020327	27	8+0,50	44	45 ±0,15	2,5	20 ±0,4		22,5	100	105	11,8	25,5	41,2	64,0	94,0	135,5	0,85
AD-P	50 x	60	RE020330	38	. 0,00	60	60 ±0,20	5	25 ±0,4	- 10,00		60	70	12,4	29,0	48,2	74,0	107,5	153,5	0,95
AD-P	50 x	80	RE020331	38	$10^{+0,50}_{+0,00}$	60	60 ±0,20	5	25 ±0,4	10,00		80	90	16,5	38,7	64,3	98,7	143,4	204,7	1,25
AD-P	50 x	120	RE020332	38	10+0,50	60	60 ±0,20	5	25 ±0,4	120 +0,30 +0,00	30	120	130	24,7	58,0	96,4	148,0	215,0	307,0	1,71
AD-P	60 x	80	RE020335	45	12+0,50	73	82 ±0,20	5	35 ±0,5	- 10,00		80	90	26,4	60,0	98,6	152,4	210,5	302,0	1,69
AD-P	60 x	100	RE020336	45	12+0,50	73	82 ±0,20	5	35 ±0,5	- 10,00		100	110	33,0	75,0	123,2	190,5	263,1	377,5	2,21
AD-P	60 x	150	RE020337	45	$12^{+0,50}_{+0,00}$	73	82 ±0,20	5	35 ±0,5	- 10,00		150	160	49,5	112,5	184,8	285,8	394,6	566,3	3,32
AD-P	70 x	120	RE020340	50	M12	78	90 ±0,20	5	40 ±0,5			120	130	50,0	121,0	225,0	356,0	513,0	741,0	5,95
AD-P	70 x	200	RE020341	50	M12	78	90 ±0,20	5	40 ±0,5	156 ^{+0,40} _{+0,00}	39	200	210	100,0	237,0	428,0	670,0	963,0	1378,0	9,82

MATERIALIEN

Von Größe 20 bis zu Größe 60 bestehen der externe Körper und die internen Pulte aus Aluminiumprofil. In der Größe 70 besteht der externe Körper aus Stahl, die internen Pulte aus Aluminiumprofil.

BEHANDLUNG

Der externe Körper ist ofenlackiert, die internen Pulte sind mit einem RAL Lack überzogen.

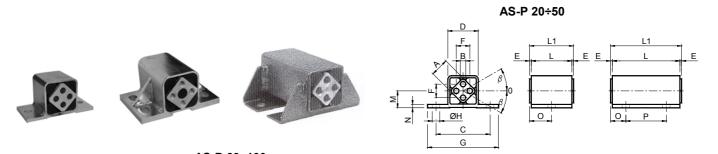
Die vielfältigen Einsatzvarianten des Elements AD-P ermöglichen es, Aufhängungen zu realisieren (Abb.1) oder das Element, durch Änderung der Neigung des Hebels, zum Beispiel als elastische Halterung für einen Haken für schwebende Lasten zu verwenden (Abb.2).

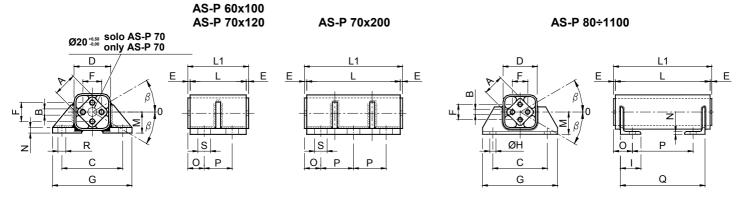
MATERIALS

From size 20 to 60 external body and inner squares are made out of light alloy profile. Size 70 external body is made of steel while inner squares are made out of light alloy profile.

TREATMENTS

The external body is oven-painted while the inner squares are covered with a RAL varnish.


The AD-P elements are multi-purpose and can be used for the assembly of suspensions (fig.1) or, by changing the angle of the levers, as elastic hook supports for suspended loads (fig.2).the levers, as elastic hook supports for suspended loads (fig.2).



SCHWINGELEMENTEOSCILLATING MOUNTINGS

Gummifederlement VIB Tipo: AS-P / Elastic Components VIB Type: AS-P

	Тур <i>Тур</i> е		Cod. N°	Α	В	С	D	Е	F		G	н	I	L	L1 +0,0 -0,3	М	N	0	Р	Q	R	s	Gew. Weight in kg
AS-P	20 x	25	RE020365	15	Ø 5	50	27	2,5	10	±0,2	65	7	-	25	30	15	3	15,0	-	-	-	-	0,07
AS-P	20 x	40	RE020366	15	Ø 5	50	27	2,5	10	±0,2	65	7	-	40	45	15	3	22,5	-	-	-	-	0,10
AS-P	20 x	60	RE020367	15	Ø 5	50	27	2,5	10	±0,2	65	7	-	60	65	15	3	12,5	40	-	-	-	0,15
AS-P	30 x	30	RE020370	18	Ø 6	60	32	2,5	12	±0,3	80	9	-	30	35	18	4	17,5	-	-	-	-	0,10
AS-P	30 x	50	RE020371	18	Ø 6	60	32	2,5	12	±0,3	80	9	-	50	55	18	4	27,5	-	-	-	-	0,15
AS-P	30 x	80	RE020372	18	Ø 6	60	32	2,5	12	±0,3	80	9	-	80	85	18	4	17,5	50	-	-	-	0,25
AS-P	40 x	40	RE020375	27	Ø 8	80	45	2,5	20	±0,4	105	11	-	40	45	25	5	22,5	-	-	-	-	0,25
AS-P	40 x	60	RE020376	27	Ø 8	80	45	2,5	20	±0,4	105	11	-	60	65	25	5	32,5	-	-	-	-	0,36
AS-P	/ (RE020377	27	Ø 8	80	45	2,5	20	±0,4	105	11	-	100	105	25	5	22,5	60		-	-	0,58
AS-P		1	RE020380	38	Ø10	100	60	5	25	±0,4	125	13	-	60	70	34	6	35,0	-	-	-	-	0,64
AS-P			RE020381	38	Ø10	100	60	5			125	13	-	80		34	6	25,0	40	-	-	-	0,89
AS-P		120	RE020382	38	Ø10	100	60	5	25	±0,4	125	13	-	120	130	34	6	25,0	80	-	-	-	1,50
AS-P			RE020386	45	Ø12	115	72	5			145	-	-	100	110		8	22,5	65	-	13	20	2,70
AS-P		- 1	RE020390				78	5	40	±0,5	170	-	-	120	130		12	35,0	60	-	17		3,50
AS-P		200	RE020391		M12x40			5	40		170	-	-	200	210		12	35,0	70	-	17	27	6,00
AS-P			RE020395		M16x22			5	45		220	18		150			8	50,0	60	130	-	-	9,70
AS-P			RE020396		M16x22			5	45		220	18		200	210		8	,-		170	-	-	12,20
AS-P			RE020397		M16x22			5	45		220	18		300	310		8	55,0		270	-	-	16,90
AS-P			RE020400		M20x28			5	50		260	22		200			9	55,0		170	-	-	16,90
AS-P			RE020401		M20x28		-	5	50		260	22		300	310		9	55,0		270	-	-	23,50
AS-P			RE020402		M20x28			5	50		260	22		400			9	55,0		370	_	-	30,20
	100 x		RE020405		M20x28	-		5	60		280	22		200	210		10	65,0	80	170	-	-	23,50
	100 x		RE020406		M20x28			5	60		280	22		300	310		10	65,0	180	270	-	-	32,50
	100 x		RE020407		M20x28			5	60		280	22		400	410		10	65,0		370	-	-	41,50
	110 x		RE020410		M24x32			5	75		380	26		250		110	12	75,0		220	-	-	47,10
	110 x		RE020411		M24x32	1		5	75		380	26		400		110		75,0		370	-	-	68,20
AS-P	110 x	500	RE020412	100	M24x32	300	170	5	75		380	26	100	500	510	100	12	75,0	360	420	-	-	82,80

SCHWINGELEMENTEOSCILLATING MOUNTINGS

Von Größe 20 bis zu Größe 50 bestehen der externe Körper und das interne Pult aus Aluminiumprofil. In den Größen 60 und 70 besteht der externe Körper aus Stahl, das interne Pult aus Aluminiumprofil. Von Größe 80 bis zu Größe 110 bestehen der externe Körper und das interne Pult aus Stahl.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Pult mit einem RAL Lack überzogen. FIXIERUNG

Der externe Körper wird ergänzt durch eine Fixierungs-Flansch; dies vereinfacht den Prozess der Montage.

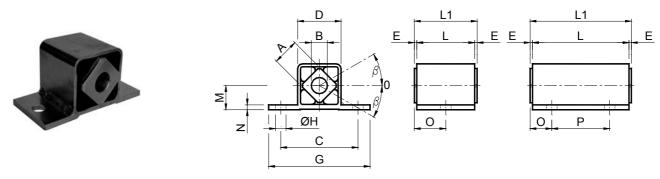
Diese Artikel eignen sich zum Einsatz bei hohen Belastungen und schwingenden Bewegungen um die neutrale Achse des Bolzens.

MATERIALS

From size 20 to 50 external body and inner square are made our of light alloy profile. Size 60 and 70 external body are made of steel while inner square is made our of light alloy profile

TREATMENTS

The external body is oven-painted while the inner square is covered with a RAL varnish.


These items are ideal for use with heavy loads and oscillating movements around the neutral axis of the pin.

	Turn		Codo Nr		Dref	nmoment (Q in Nm be	i≮β			Turn		Codo Nr
	Typ <i>Typ</i> e		Code-Nr. Cod. N°		7	Torque Q i	n Nm at ≮,	β			Typ Type		Code-Nr. Cod. N°
	Type		00d. I 1	5°	10°	15°	20°	25°	30°		<i>i</i> ype		00d. I 1
AS-P	20 x	25	RE020365	0,7	1,6	2,5	3,8	5,4	7,8	AS-F	20 x	25	RE020420
AS-P	20 x	40	RE020366	1,1	2,5	4,0	6,1	8,7	12,5	AS-F	20 x	40	RE020421
AS-P	20 x	60	RE020367	1,6	3,8	6,0	9,2	13,0	18,8	AS-F	20 x	60	RE020422
AS-P	30 x	30	RE020370	1,8	4,2	7,0	10,5	14,3		AS-F	30 x	30	RE020425
AS-P	30 x	50	RE020371	3,0	7,0	11,7	17,5	23,8		AS-F	30 x	50	RE020426
AS-P	30 x	80	RE020372	4,8	11,2	18,9	28,0	38,2	52,0	AS-F	30 x	80	RE020427
AS-P	30 x	40	RE020375	4,7	10,2	16,5	25,6	37,6	54,2	AS-F	30 x	40	RE020430
AS-P	40 x	60	RE020376	6,8	15,3	24,8	38,4	56,4	81,3	AS-F	40 x	60	RE020431
AS-P	40 x	100	RE020377	11,8	25,5	41,2	64,0	94,0	135,5	AS-F	40 x	100	RE020432
AS-P	50 x	60	RE020380	12,4	29,0	48,2	74,0	107,5	153,5	AS-F	50 x	60	RE020435
AS-P	50 x	80	RE020381	16,5	38,7	64,3	98,7	143,4	204,7	AS-F	50 x	80	RE020436
AS-P	50 x	120	RE020382	24,7	58,0	96,4	148,0	215,0	307,0	AS-F	50 x	120	RE020437
AS-P	60 x	100	RE020386	33,0	75,0	123,0	191,0	263,0	378,0				
AS-P	70 x	120	RE020390	50,0	121,0	225,0	356,0	513,0	741,0				
AS-P	70 x	200	RE020391	100,0	237,0	428,0	670,0	963,0	1378,0	•			
AS-P	80 x	150	RE020395	70,0	160,0	283,0	440,0	668,0	955,0				
AS-P	80 x	200	RE020396	93,0	213,0	378,0	586,0	890,0	1274,0				
AS-P	80 x	300	RE020397	140,0	320,0	566,0	880,0	1336,0	1910,0				
AS-P	90 x	200	RE020400	134,0	360,0	618,0	985,0	1415,0	2015,0				
AS-P	90 x	300	RE020401	201,0	540,0	927,0	1478,0	2122,0	3022,0				
AS-P	90 x	400	RE020402	268,0	720,0	1236,0	1970,0	2830,0	4030,0				
AS-P	100 x	200	RE020405	192,0	480,0	806,0	1230,0	1800,0	2570,0				
AS-P	100 x	300	RE020406	288,0	720,0	1209,0	1845,0	2700,0	3855,0				
AS-P	100 x	400	RE020407	384,0	960,0	1612,0	2460,0	3600,0	5140,0				
AS-P	110 x	250	RE020410	385,0	1020,0	1720,0	2680,0	3890,0	5990,0				
AS-P	110 x	400	RE020411	616,0	1632,0	2752,0	4288,0	6224,0	9584,0				
AS-P	110 x	500	RE020412	770,0	2040,0	3440,	5360,0	7780,0	11980,0				

Gummifederelement VIB Typ: AS-F / Elastic Components VIB Type: AS-F

	Тур <i>Гур</i> е		Code-Nr Code no.	Α	В	С	D	E	G	н	L	L1 ⁰ _{-0.3}	М	N	0	Р	Gewicht Weight in kg
AS-F	20 x	25	RE020420	15	10 +0.4 +0.2	50	27	2,5	65	7	25	30	15	3	15,0	-	0,07
AS-F	20 x	40	RE020421	15	10 +0.4	50	27	2,5	65	7	40	45	15	3	22,5	-	0,10
AS-F	20 x	60	RE020422	15	10 +0.4 +0.2	50	27	2,5	65	7	60	65	15	3	12,5	40	0,15
AS-F	30 x	30	RE020425	18	13 -0.0	60	32	2,5	80	9	30	35	18	4	17,5	-	0,10
AS-F	30 x	50	RE020426	18	13 -0.0	60	32	2,5	80	9	50	55	18	4	27,5	-	0,15
AS-F	30 x	80	RE020427	18	13 -0.0	60	32	2,5	80	9	80	85	18	4	17,5	50	0,25
AS-F	40 x	40	RE020430	27	16 +0.5	80	45	2,5	105	11	40	45	25	5	22,5	-	0,25
AS-F	40 x	60	RE020431	27	16 +0.5	80	45	2,5	105	11	60	65	25	5	32,5	-	0,36
AS-F	40 x	100	RE020432	27	16 +0.5	80	45	2,5	105	11	100	105	25	5	22,5	60	0,58
AS-F	50 x	60	RE020435	38	20 +0.5	100	60	5	125	13	60	70	34	6	35,0	-	0,64
AS-F	50 x	80	RE020436	38	20 +0.5 +0.2	100	60	5	125	13	80	90	34	6	25,0	40	0,89
AS-F	50 x	120	RE020437	38	20 +0.5 +0.2	100	60	5	125	13	120	130	34	6	25,0	80	1,50

MATERIALIEN

Der externe Körper und das interne Pult sind aus Aluminiumprofil.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Pult mit einem RAL Lack überzogen.

FIXIERUNG

Der externe Körper wird ergänzt durch eine Fixierungs-Flansch; dies vereinfacht den Prozess der Montage.

MATERIALS


The external body and the inner square are made of light alloy profile.

TREATMENTS

The external body is oven-painted while the inner square is covered with a RAL varnish.

FITTING

The external body includes the fixing flanges: this makes more easy the assembly operations.

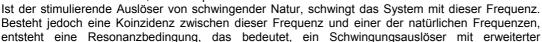
Anwendungsbeispiele:

Die elastischen Elemente AS-P oder AS-F können für die Konstruktion von Spielgeräten für Kinder zum Einsatz gebracht werden.

Application example:

The AS-P or AS-F elastic elements can be used for the realization of children games.

THEORIE DER MECHANISCHEN SCHWINGUNGEN / VIBRATION MECHANICAL THEORY


Das Phänomen der Schwingungen besitzt, bedingt durch seine Auswirkungen auf das dynamische Verhalten der Maschinen und das Leben ihrer Organe, eine fundamentale Relevanz beim Entwurf mechanischer Anlagen.

Die Erforschung dieser Phänomene ist jedoch nahezu unmöglich, wenn das System nicht auf ein Schemata zurück geführt werden kann, in dem nur die Hauptauslöser der Schwingungen entlang der 3 prinzipiellen Achsen analysiert werden. Eine derartige Vereinfachung resultiert im Hinblick auf die Planung fast immer effizient.

Die Schwingungssysteme, die den Gegenstand der Erforschung der Mechanik der Maschinen darstellen, lassen sich in zwei Kategorien unterteilen:

- freie Schwingungen;
- erzwungene Schwingungen.

Die freien Schwingungen entstehen bei Abwesenheit von äußeren Einflüssen, das bedeutet, wenn keine externe Kräfte auf das System einwirken. In diesem Fall schwingt das System mit einer Frequenz, die einer ihrer natürlichen Frequenzen entspricht, welche dem System eigen sind und ausschließlich von der Distribution seiner Masse und Rigidität bestimmt sind. Im Gegensatz dazu versteht man unter erzwungenen Schwingungen die Schwinungen, die unter Einwirkung von externen Kräften entstehen, zum Beispiel durch Induktion eines Motors.

Amplitude. Ein Beispiel der Konsequenzen, welche die Schwingungen unter Resonanzbedingung haben können, ist der Einsturz der Brücke von Tacoma, der sich am 7. November 1940 im Bundesstaat Washington ereignet hat. Wenn auch die Windgeschwindigkeit bei lediglich 72 Km/h verzeichnet wurde, sette die kontiniuerlichen Schwingungen die Struktur in eine Resonanzsituation. Unter diesen speziellen Bedingungen, verstärkten sich die Schwingungen derart, dass der Straßenmantel ständig von den Schwingungswellen erschüttert wurde, bis zum endlichen Kollaps der kompletten Trägerstruktur, welche den Einsturz zur Folge hatte.

Die Gesamtheit der reellen Schwingungssysteme unterliegt Abschwächungen, bedingt durch den Energieverlust durch Reibung und anders geartete Widerstände. Ist die Abschwächung gering, hat dies wenig Einfluss auf die natürlichen Schwinungen des Systems. Im Falle einer bedeutenden Abschwächung jedoch, wirkt die sich stark auf die Frequenzen in Resonanznähe aus. Eine mechanische Schwingung ist charakterisiert durch:

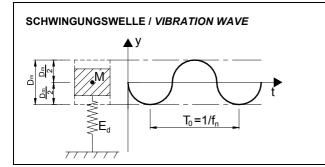
- Amplitude ($\frac{D_m}{2}$): Maximale Auslenkung einer Wechselgröße
- Frequenz (f_n): Anzahl der Schwinungen in einer bestimmten Zeit

Vibrating phenomena play a key role in mechanical engineering because of their effects on the dynamic behaviour of machines and their parts.

The above phenomena can be studied only if the system is broken down into a diagram, in order to focus on and analyse its main vibration sources along the 3 main axis. In the majority of the cases, this simplification seems to be sufficient.

Vibrating systems, which are the object under study in mechanics of machinery, can be divided in two classes:

- with free vibrations;
- with forced vibrations.


Free vibrations occur in the absence of external forcing, i.e. when no external forces influence the system; in this case, the system will oscillate with a frequency that is characteristic of that system. The frequency is known as the system's natural frequency and depends only on the distribution and the stiffness of its system's mass. Forced vibrations occur under the excitation of external forces such as motor-driven forces.

When excitation is driven by oscillations, the system shares the same vibrational frequency, but if this frequency equals one of its natural frequencies, the system is said to be in a state of resonance, i.e. the tendency of the system to oscillate with high amplitude. The Tacoma Narrows Bridge failure is an example of the effects caused by vibrations. On November 7, 1940 in the State of Washington, the bridge gave way before winds of only 72 Km/h. It was not just the speed of these winds, but the fact that they produced oscillations of resonant frequency in step with the oscillations of the structure. Under such a particular condition, oscillations increased so much that they induced continuous vibrational waves along the road surface, caused the bridge structure to twist and, ultimately, to crumble.

Vibrating systems are all subjected to damping, given the energy dissipation caused by friction or other resistance. Reduced damping effects have a little impact on the system's natural frequencies; on the contrary, if strong, they play a key role in frequencies near to resonance.

Mechanical vibration is characterized by :

- Amplitude $(\frac{D_m}{2})$: maximum variation from a reference value
- Frequency (f_n): the number of oscillations within a time unit.

D_m: maximale Amplitude / maximum amplitude

f_n: Frequenz / frequency

T₀ Schwingungsdauer / Oscillation time

M: Masse des Systems / System mass

E_d: Dynamische Elastizität des Systems / System dynamic spring

y: Y-Achse [mm] / frame axis [mm]

t: X-Achse [s] / abscissa axis [s]

FÖRDERANLAGEN MIT SCHUBKURBEL-ANTRIEB: EINFÜHRUNG

Die Technologie der elastischen Elemente VIB ermöglicht es, schwingende Hochleistungsförderanlagen zum Transport von Materialien verschiedener Art und Stückgröße zu realisieren. Durch den Einsatz der elastischen Elemente VIB gelingt somit die Konstruktion von Transportsystemen, die im Hinblick auf die traditionellen Systeme deutliche Vorteile bieten:

- Vereinfachung und wirtschaftlicher Vorteil im Hinblick auf Planung und Realisierung
- Höhere Lebensdauer bei reduzierten Wartungsaufwendungen
- Unzählige Applikationen: Förderanlagen, Siebanlagen, Kalibratoren, Rührwerke, Siebgeräte etc.

Die Schwingrinnen sind durch den Einsatz der schwingenden Elemente VIB konstruiert. Dies ermöglicht eine Verbreitung der erzeugten Schwingungen ausgehend von einer Exzenterscheibe entlang des Förderungsverlaufs des Materials. Die durch die Technologie VIB realisierten schwingenden Förderanlagen gestatten die Planung und Konstruktion von Schwingrinnen mit Fluidisiereinrichtung (Transport) sowie auch Schüttelfunktion (Siebanlagen und Kalibration).

Die Schwingrinnen mit Fluidisiereinrichtung werden bei niedrigen Frequenzen (2 Hz) und hohen Amplituden (max. zirka 30 cm) eingesetzt und eignen sich in besonderem Maße zum Transport von Materialen von großen Dimensionen.

Die Schwingrinnen mit Schüttelfunktion arbeiten mit erhöhter Frequenz (bis zu 10 Hz) und reduzierten Amplituden (max. zirka 2 cm). Diese Typen von Förderanlagen werden besonders im Bereich des Bergbaus, der Verbeitung von Obst und Gemüse sowie der Herstellung von Tabak, Recycling, Siebung von Mehl, Mischung von Tierahrung etc. zum Einsatz gebracht.

CONVEYORS ACTUATED BY A CONNECTING ROD-CRANK DEVICE: INTRODUCTION

VIB elastic elements are engineered in order to obtain high-performance oscillating conveyors that carry material of different type and size. VIB elastic elements have suitable features for the production of highly advanced conveyors compared to the traditional ones and provide the following improvements:

- engineering and production is facilitated and money-saving
- long life and reduced maintenance
- multi-faceted applications/solutions: conveyors, screens, calibrators, stirrers, etc.

The vibrating channels produced with VIB oscillating elements allow to propagate the vibrations generated by an eccentric along the forward plane of the material. Vibrating conveyors - backed by the VIB technology - may be used to design and produce vibrating channels for fluid conveyance as well as hopping channels (screening and calibration). Fluid vibrating channels are used at low frequencies (2Hz) and high amplitudes (max approx. 30 cm) and are ideal for bulky material.

Hopping conveyors work at high frequencies (up to 10 Hz) and reduced amplitudes (max approx. 2 cm). These conveyors are largely used in the mining-quarrying industry, fruit and vegetable processing, tobacco processing, recycling, flour sifting, fodder mixing, etc.

Schwinggruppe mit einer Masse

Das in Abb. 1 dargestellte System, ist die einfachste und kostengünstigte Methode zur Konstruktion von Förderanlagen zum Transport von Stückgut von mittelgroßen oder langen Dimensionen. Diese Anlage zeichnet sich durch eine Förderrinne (1) aus, die von elastischen Aufhängungen (2) getragen und durch einen Schubkurbel-Antrieb (3) aktiviert wird. Diese Förderanlagen werden mit festen Strukturen realisiert und sicher im Erboden verankert. Dies ist notwendig, da die Schwingrinne mit Beschleunigungen von bis zu 1,6 g verwendet werden kann. Eine korrekte Dimensionierung der Maschine ist daher von besonderer Wichtigkeit und eine entsprechende Wahl der elastischen Elemente VIB trägt zur Absorption der Schwingungen und einer optimalen Ausführung der Schwingrinne bei.

Diese Anlage zeichnet sich durch eine Förderrinne aus, die von Aufhängungen getragen wird. Jede dieser Aufhängungen besteht aus 2 BT-F und wird durch einen Schubstangenkopf TB aktiviert, der als elastisches Kugelgelenk dient. Diese einfache Anwendung kann jedes Mal eingesetzt werden, wenn die dynamischen Kräfte im Spiel nicht zu hoch sind, da alle Lasten und Spannungen auf BT-F lasten

Die Abbildung 2 zeigt die beste Methode zur Konstruktion einer Aufhängung. Dieses System ist durch den Einsatz eines Anschlussgeräts in Form von gedrechselten Sechskanteisen gekennzeichnet. An den Enden der Eisen müsste das eine Gewinde rechtsläufig und das andere linksläufig sein, dass auf diese Weise während in Betriebnahme der Anlage kleine unvermeidbare Korrektionen des Achsenabstands mittels eines einfachen Schraubenschlüssels vorgenommen werden können.

Das gleiche Konstruktionsystem, jedoch mit einem festen Aufhängungs-Achsabstand, zeichnet im Produktspektrum VIB die elastischen Komponenten **TP-S** oder **TP-F** aus.

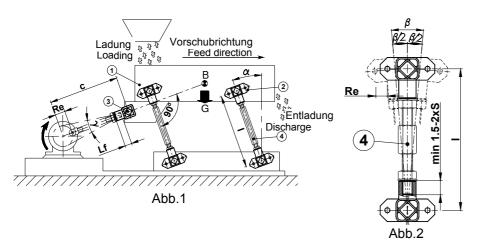
Um die eingesetzte Stärke zu verringern, kann während des Planungsprozeses veranlasst werden, dass die Anlage unter einer speziellen Bedingung arbeitet. Das bedeutet, in einer Resonanz-Situation oder bei einer Frequenz, die jener des Systems nahezu entspricht. Unter dieser speziellen Bedingung werden die Schwingungsamplituden wesentlich amplifiziert und es somit ermöglicht, eine geringere Motorisierungsstärke aufzuwenden, dies bei gleichzeitiger Erhöhung der Belastungen, welche der Struktur induziert werden.

XOne-mass vibrating unit

The system illustrated in fig. 1 is the most simple and inexpensive method to build conveyors for medium to large sized unpacked material. This system consists of a sliding chute (1) supported by elastic suspensions (2) actuated by a connecting rod-crank device (3). These conveyors are used with rigid structures and are firmly fixed to the ground because the vibrating channel may work with accelerations up to 1.6 g. Given the above, correct dimensioning of the machine is essential, while the appropriate choice of the VIB elastic elements improves the vibration absorption and optimizes the execution of the vibrating channel.

This system consists of a chute supported by suspensions, each formed by 2 BT-F and actuated by a connecting rod TB that acts as an elastic bearing. This simple application can be used anytime dynamic forces are not too high because BT-F are charged with all loads and stresses.

Figure 2 illustrates the ideal design of a suspension using one connecting unit obtained by drawing an hexagonal bar. The bar end threads must be right-hand and left-hand respectively: this allows any unavoidable adjustments of the axle base which can be carried out with a monkey spanner when setting up the system.


Within the VIB range, elastic elements TP-S or TP-F are designed for use with similar engineering systems but with fixed suspension axle base.

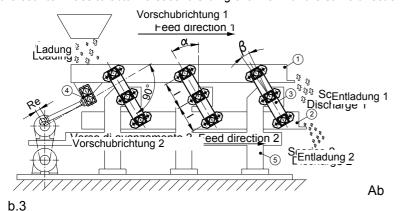
During the design phase, power can be reduced by making the plant work under resonance condition, i.e. under a frequency near to that of the system. Under this particular condition, the oscillation amplitudes greatly grow and motor drive power can be reduced yet with an increase in the structure stresses.

SCHWINGELEMENTEOSCILLATING MOUNTINGS

Legende / Key:

- 1: Förderrinne / Sliding chute
- 2: Aufhängung VIB Typ BT-F / BT-F suspension 3: Schubstangenkopf VIB Typ TB / TB Drive head
- 4. Anachusagarët / Connecting rad
- 4: Anschlussgerät / Connecting rod B: Schwerpunkt / Center of gravity
- G:Gewicht / Weight
- I: Achsenabstand / Distance between centers
- L_f: Minimallänge des Gewindeteils (1.5-2 S) Min Screwed-in length (1.5-2 S)
- S: Durchmesser des Schubstangenkopfs VIB Typ TB oder BT-F

Threaded diameter inside types TB or BT-F R_e : Radius der Schubkurbel / Sliding crank radius


- α: Montagewinkel von 20° bis 30°
- Rocker angle from 20° to 30°
- β: Arbeitswinkel max 10° Working angle max10°

Schwinggruppe ausbalanciert durch Masse und Gegenmasse

Wenn die dynamischen und inertialen Kräfte hoch sind und die Förderanlage estreme Leistungen und Effizienz erbringen muss, ist der Einsatz eines Schwingsystems mit Masse und Gegenmasse empfehlenswert, da die Belastungen nicht komplett im Fundament abgelassen, sondern dynamisch kompensiert werden, mittels zwei schwingender Massen. Die Abbildung 3 zeigt das Schema einer schwingenden Förderanlage, ausbalanciert mit zwei Massen und aktiviert durch einen Schubkurbel-Antrieb. Diese Anlage zeichnet sich durch eine Förderrinne aus, die von **TD-S** Aufhängungen getragen wird und aktiviert durch ein Schwingelement **AD-P**, das als elastisches Gelenk dient. In diesen Förderanlagen mit zwei Massen, kann die Betätigung entweder durch die obere Förderrinne oder die untere Gegenmasse vorgenommen werden. Als Alternative zu den **TD-S** können auch die **TD-F** eingesetzt werden; diese Produkte unterscheiden sich lediglich durch die unterschiedlichen Montagepraktiken, die im Anschluss illustriert werden. Die Förderrinne (1) und die Gegenmasse (2) haben das gleiche Gewicht. Beide Massen gleichen sich somit während der Schwingung dynamisch aus, die eine Masse bewegt sich dabei entgegengesetzt zu der anderen. Diese System ermöglicht es zudem, die Schwinung der Gegenmasse zur Einrichtung einer zweiten Förderrinne zu nutzen, wobei die Vorschubrichtung jener der oberen entspricht.

Balanced vibrating unit with mass and counter mass

With high dynamic and inertial forces, and any time there is the need for an efficient and high-performance conveyor, we recommend that you use an oscillation system with mass and counter mass because stresses are never completely discharged in foundations but dynamically compensated by the two oscillating masses. Figure 3 illustrates the diagram of a two-balanced-mass oscillating conveyor actuated by a connecting-rod/crank device. This plant consists of a chute supported by TD-S suspensions and enabled by an AD-P elastic element that acts as the elastic joint. These two-mass conveyors can be operated both from the upper sliding channel and the lower counter mass. As an alternative, TD-S can be replaced by TD-F which differs only in the coupling procedures as illustrated below. The sliding channel (1) and the counter mass (2) have the same weight. Therefore, while they oscillate, their two masses are dynamically balanced because one moves in the opposite direction to the other. This system also allows to exploit the oscillation of the counter mass to obtain a second sliding channel with the same direction of the upper one.

Legende / Key:

- 1: Obere Förderrinne / Superior sliding chute
- 2: Untere Gegenmasse (Untere Förderrinne) Counter mass (Inferior sliding chute)
- 3: Aufhängung VIB Typ TD-S / TD-S Suspension
- 4: Schwingelement VIB Typ AD-P / AD-P Oscillating Element
- 5: Fundament / Base plate
- α: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle
- I: Achsenabstand / Distance between centers

Schwinggruppe in Resonanz

Die Schwingförderer mit einer Masse oder ausbalanciert mit zwei Massen, können entworfen werden, um mit einen dynamischen Resonanzssystem zu arbeiten. Der Zweck ist hierbei die Erweiterung der Schwingungsamplituden bei gleichzeitiger Reduktion der Potenz, die von dem System erfordert wird. Dieser Zustand macht jedoch, verglichen mit einem dynamischen System, das nicht in Resonanz funktioniert, den Gebrauch einer größeren Anzahl elastischer Aufhängungen erforderlich. Durch die elastischen Komponenten VIB kann dem System die notwendige dynamische Elastizität geliefert werden, durch die ein Funktionieren im Zustand der Resonanz realisiert werden kann, unter Vermeidung einer Verteilung der Schwingungen an der Stuktur der Maschine und am Erdboden durch das Fundament.

Resonance vibrating unit

One-mass or two-mass-balanced vibrating conveyors can be designed to work under resonance dynamic regimen in order to increase the oscillation amplitudes and at the same time reduce the power required by the system. This condition however involves a larger number of elastic suspensions compared to dynamic regimen out of resonance. VIB elastic elements provide the necessary dynamic elasticity to the system which can operate under resonance conditions but avoiding that vibrations propagate to the machine structure and, through the foundations, to the ground.

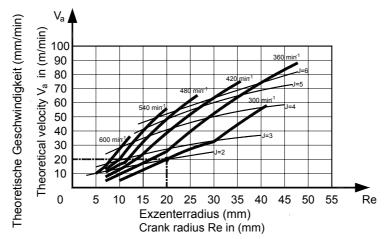
BERECHNUNGSSYSTEM UND FORMELN / CALCULATION SYSTEMS AND FORMULA

Nomenklatur / Nomenclature:

Symbol Symbol	Beschreibung Description	Maßeinheit Measure unit
α	Anstellwinkel Rocker angle	[°]
β	Arbeitswinkel Working angle	[°]
Υ	Schwingwinkel Oscillation angle	[°]
В	Schwerpunkt Center of gravity	
D _m	Schwingweite Maximum amplitude	[mm]
E _d	Dynamischer Federwert Dynamic spring value	[N/mm]
Et	Gesamtfederwert Total spring value	[N/mm]
f _n	Eigenfrequenzen Own frequency	[Hz]
f ₀	Einzugsfrequenz in das System Entrance frequency in the system	[Hz]
F	Schwungsstärke Acceleration force	[N]
G	Gewicht	[N]

Symbol Symbol	Beschreibung Description	Maßeinheit Measure unit
g	Erdbeschleuningung Gravitational acceleration	9,81 [m/s ²]
I	Achsabstand Distance between centers	[mm]
J	Maschinenkennzahl Machine factor	
m	Masse <i>Mass</i>	[Kg]
M _d	Dynamischer Drehmoment Dynamic torque	[Nm/°]
n	Drehzahl Rotation Velocity	[min ⁻¹]
R _e	Schubkurbelradius Crank radius	[mm]
Va	Theoretische Geschwindigkeit des Vorschubs des Materials Theoretical feed velocity of the material	[m/min]
V _r	Reale Vorschubs-Geschwindigkeit des Materials Real feed velocity of the material	[m/min]
w	Theoretische Stärke über der Nockenwelle Theoretical driving power on crank	[kW]
λ	Verringerungskoeffizient der Vorschubs-Geschwindigkeit Reduction coefficient feed velocity	

Prinzipielle Berechnungsformeln / Main calculation formula:


Formel / Formula	Maßeinheit Measure unit
G = m⋅g	[N]
$\mathbf{E}_{t} = 0.001 \cdot \mathbf{m} \cdot \left(\frac{2\pi}{60} \cdot \mathbf{n}\right)^{2}$	[N/mm]
$J = \frac{\left(\frac{2\pi}{60} \cdot n\right)^2 \cdot R_e}{9810}$	
$\mathbf{D}_{m} = 2 \cdot R_{e}$	[mm]

Formel / Formula	Maßeinheit <i>Measure unit</i>
$\mathbf{f_0} = \frac{\mathbf{n}}{60}$	[Hz]
F = J·m·g	[N]
$V_r = V_a \cdot \lambda$	[m/min]
$\mathbf{W} = \frac{D_{m} \cdot J \cdot m \cdot g \cdot n}{9550 \cdot 2 \cdot 1000 \cdot \sqrt{2}}$	[kW]

Grafik der theoretische Geschwindigkeit / Theoretical velocity graph:

Diese Grafik erlaubt eine Bestimmung der theoretischen Fördergeschwindigkeit des Matrials in einer Förderanlage mit Schubkurbel-Antrieb, deren Aufhängungen in einem Winkel von α=30° angebracht sind.

Die reelle Fördergeschwindigkeit V_r hängt jedoch von der Art des transportierten Produkts ab. Die reelle Geschwindigkeit V_r ist bestimmt durch das Verhältnis:

 $V_r = V_a \cdot \lambda$

Λ ist hierbei der Reduktions-Koeffizient, bedingt durch die Verbindung die von der Art des zu transportierenden Materials abhängig ist.

This graph shows the theoretical feed velocity of the material on a conveyor actuated by the connecting-rod/crank device with suspensions mounted at an angle of α =30°.

Real feed velocity V_r depends on the type of product fed. Real velocity V_r is the result of the relation: $V_r = V_a \cdot \lambda$ where λ is the reduction coefficient due to the cohesion that depends on the type of material to be conveyed.

Typologie des transportierten Produkts Carried product type	λ	Typologie des transportierten Produkts Carried product type	λ
Kies <i>Gravel</i>	0,95	Holzspäne Wood chips	0,75
Sand Sand	0,70	Blattgemüse Leaf vegetable	0,70
Kohle (feinkörnig) Coal (small granulometry)	0,80	Zucker Sugar	0,85
Kohle (grobkörnig) Coal (coarse granulometry)	0,85	Salz Salt	0,95

BERECHNUNGSBEISPIEL: Bestimmung der reellen Geschwindigkeit des Materials in einer Förderanlage für Kies und Schotter mit Schubkurbel-Antrieb und elastischen Aufhängungen VIB

CALCULATION EXAMPLE: Determination of the real velocity of the material on a gravel conveyor actuated by a connecting rod/crank device with VIB elastic suspensions

Initial Daten / Given data:

n: Drehgeschwindigkeit er Exzenter / Crank rotation velocity: 300 min⁻¹

Re: Radius der Schubkurbel / Crank radius: 20 mm

α: Montagewinkel / Rocker angle: 30°

λ: Reduktionskoeffizient / Reduction coefficient feed velocity: 0,95 (Kies / gravel)

Unbekannte / Unknow values:

Va: Theorische Fördergeschwindigkeit / Theoretical feed velocity

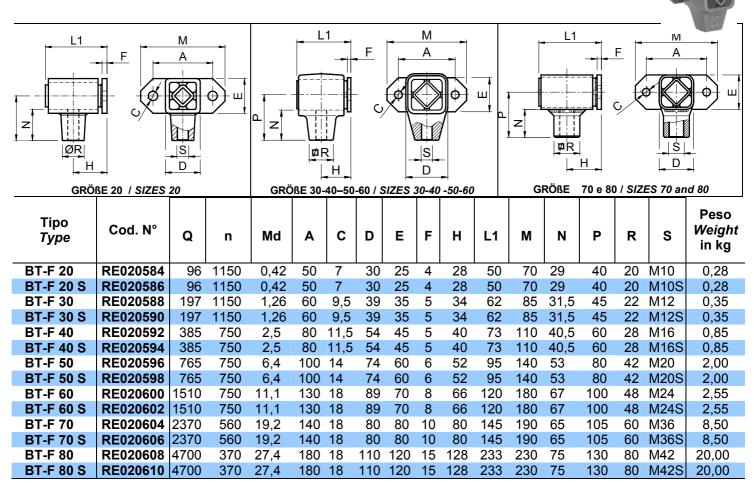
V_r: Reelle Fördergeschwindigkeit / Real feed velocity

Berechnungsschema / Calculation steps:

J: Index der schwingenden Maschine / Oscillating machine factor =
$$\frac{\left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 \cdot Re}{9810} = \frac{\left(\frac{\pi \cdot 300}{30}\right)^2 \cdot 20}{9810} = 2,0$$

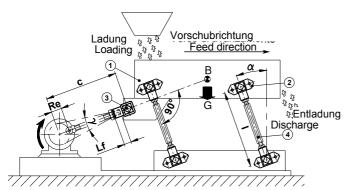
Va: Theoretische F\u00f6rdergeschwindigkeit (in Entsprechung der "Grafik theoretische Geschwindigkeit") Theoretical feed velocity = 20 m/min (obtained from "theorical velocity graph")

 V_r : Reelle Geschwindigkeit / Real feed velocity = $V_a \cdot \lambda$ = 20 · 0,95 = 19 m/min.


AUSWAHL-TABELLE DER SCHWINGUNGSKOMPONENTEN: SCHUBKURBEL-ANTRIEB SELECTION TABLE OF OSCILLATING COMPONENTS: CONNECTING ROD/CRANK DEVICE

			ATING COMIT OF	Gummife					
ng n	Produkt / Product →	BT-F	ТВ		P-F	TD-S	TD-F	AD-P	GF
◆Anwendung Application	Aktivierung / Device	Seite 73	Seite 75	Seiten 77	7/78	Seiten	80/81	Seiten 63/83	Seite 87
-/.		Schwinggruppe mit einer Masse mit regulierbarem Achsabstand One-mass oscillating unit with adjustable axle base	Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod					Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	
7,		Schwinggruppe mit einer Masse mit fixem Achsabstand One-mass oscillating unit with fixed axle base	Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod					Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	
J			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod	Schwinggrupp einer Masse fixem Achsab One-mass osc unit with fixed base	e mit estand cillating			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	
7			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod	Schwinggrupp einer Masse m regulierban Achsabsta One-mass osc unit with r adjustable axle	nit nicht em ind cillating not			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	
			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod			Schwinggi zwei Mas nicht regul Achsab Two-mass unit wi adjustable	ssen mit lierbarem ostand oscillating ith not	Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	
5			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod			Schwinggr zwei Mas nicht regul Achsab Two-mass unit wi adjustable	ssen mit lierbarem ostand oscillating th not	Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	
			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod					Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	Schwinggruppe mit einer Masse mit regullerbarem Achsabstand One-mass oscillating unit with adjustable axle base
<u></u>			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod					Elastisches Scharnier in dem Gelenk des Schubstangenkopfs oder elastisches Lager Elastic hinge in the joint of the big end of the connecting rod or elastic accumulator	Schwinggruppe mit zwei Massen mit regulierbarem Achsabstand Two-mass oscillating unit with adjustable axle base
			Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod						
								Elastisches Scharnier in dem Gelenk des Schubstangenkopfs Elastic hinge in the joint of the big end of the connecting rod	
								Elastisches Lager Elastic accumulator	

Schwingelement VIB Typ: BT-F / Elastic Components VIB Type: BT-F



Q: Maximale Belastung in N pro Aufhängung / Max loading in N per rocker suspension

n: Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮±5°

M_d:

Dynamisches Paar in in Nm/° pro ≠ ±5°, im Frequenz-Bereich zwischen 300 bis zu 600 min / Dynamic torque in Nm/° at per ≠ ±5°, in frequency range

Legende / Key:

- 1: Förderrinne / Sliding chute
- 2: Aufhängung VIB Typ BT-F / BT-F suspension
- 3: Schubstangenkopf VIB Typ TB / TB Drive head
- 4: Anschlussgerät / Connecting rod
- B: Schwerpunkt / Centre of gravity
- G: Gesamtgewicht / Total weight
- I: Achsenabstand / Distance between centres
- L_f: Minimallänge des Gewindeteils (1.5-2 S) / Min Screwed-in lenght (1.5-2 S)
- Re: Radius der Schubkurbel / Crank radius
- a: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle

MATERIALIEN

Der externe Körper besteht aus Stahl in den Größen 20, 70 und 80, aus Aluminium in den Größen 30-40-50-60. Das interne Pult und die Flansche sind aus Stahl.

BEHANDLUNG

Der externe Körper, das interne Pult und die Flansche sind ofenlackiert.

VERWENDUNG

Die schwingende Komponente BT-F wird hauptsächlich verwendet Realisierung Aufhängungen der zur in Schüttelsieben, Förderanlagen und in die mit Schubkurbelantrieb aktiviert werden.

MATERIALS

The external body is made of steel in the sizes 20, 70 and 80, light metal die cast in the sizes 30-40-50-60. The inner square and the fixation flange are made of steel

TREATMENTS

The external body, the inner square and the fixation flange are oven-painted.

DUTY

BT-F Oscillating component is generally used to realize rocker suspension in conveyors and oscillating screens actuacted by connecting rod/crank device.

SCHWINGELEMENTE OSCILLATING MOUNTINGS

BERECHNUNGSBEISPIEL: Determination der Anzahl an Aufhängungen, die notwendig für einen Schwingförderer sind. Zum Einsatz gebracht werden Gruppen, die aus zwei BT-F 50 bestehen.

CALCULATION EXAMPLE: Determination of the mounting number for an oscillating conveyor using BT-F 50 type.

Initial Daten / Given data:

n:

G_g:

Dynamisches Paar: 6,4 Nm/° (laut Katalog/catalogue) Ma:

Dynamic torque:

150 min⁻¹

5580 N

Gewicht des zu transportierenden G_m: Materials:

Material weight:

Länge des Achsabstands der

Aufhängung:

Distance between centers:

Radius der Schubkurbel:

Crank radius:

18 mm

250 mm

1000 N

Unbekannte / Unknow values:

Gewicht der Rinne:

Drehgeschwindigkeit

Rotation velocity:

Chute weight:

X: Anzahl der zum Einsatz gebrachten Aufhängungen / Number of mountings

Berechnungsschema / Calculation steps:

E_d: Dynamische Elastizität / Dynamic spring value =
$$\frac{M_d \cdot 360 \cdot 1000}{I^2 \cdot \pi} = \frac{6.4 \cdot 360 \cdot 1000}{250^2 \cdot \pi} = 11.74 \text{ N/mm}$$

Das Gesamtgewicht G wird durch die Summe des Gewichts der Rinne (G_g), addiert mit 22% des Gewichts des zu transportierenden Materials (**G**_m).

The total weight G is given by the sum of weight of the chute (G_g) plus 22% of the weight of the material to be conveyed (G_m)

G: Gesamtgewicht:
$$= G_g + \frac{G_m \cdot 22}{100} = 5580 + \frac{1000 \cdot 22}{100} = 5800 \text{ N}$$

$$\textbf{E_t:} \quad \begin{array}{ll} \text{Gesamte lastizität:} \\ \text{Total spring value:} \end{array} = \frac{G}{9810} \cdot \left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 = \frac{5800}{9810} \cdot \left(\frac{\pi \cdot 150}{30}\right)^2 = 145,7 \text{ N/mm} \end{array}$$

1) Zustand ohne Resonanz / Without resonance condition:

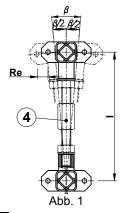
Die Anzahl der Elemente X lässt sich durch Division des Gesamtgewichts der schwingenden Masse durch die zulässige Belastung einer Aufhängung bestimmen, also:

The number of the elements X is obtained by dividing the total weight of the oscillating mass by the load permitted by one mounting, so:

 $=\frac{G}{O}=\frac{5800}{765}=7,58 \Rightarrow 8$

Konklusion: Es müssen zumindest 8 Aufhängungen verwendet werden, jede von ihnen muss sich aus 2 Elementen BT-F 50 zusammen setzen → Stückzahl 16 BT-F 50.

Conclusion: It must be used 8 mountings at least, each comprising 2 pcs BT-F 50 elements → 16 pcs BT-F 50.

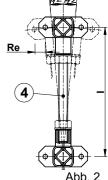

2) Zustand mit Resonanz / With resonance condition:

Die Gesamt-Elastizität Et der Aufhängung muss ungefähr 10% über der dynamischen

The total spring value E_t of the mounting must be at least 10% greater that than the dynamic spring value. so: $= \frac{E_t}{0.9 \cdot E_d} = \frac{145.7}{0.9 \cdot 11.74} = 13.78 \Rightarrow 14$ dynamic spring value, so:

Konklusion: Es müssen zumindest 14 Aufhängungen verwendet werden, jede von ihnen muss sich aus 2 Elementen BT-F 50 zusammen setzen → Stückzahl 28 BT-F 50.

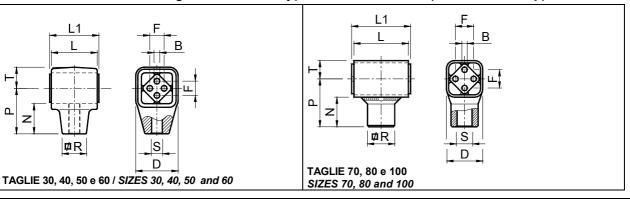
Conclusion: It must be used 14 mountings, each comprising 2 pcs BT-F 50 elements → 28 pcs BT-F 50.



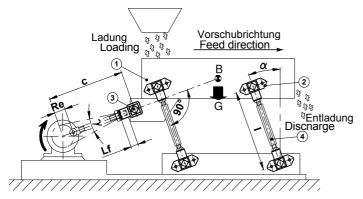
Zur Realisierung einer Aufhängung mit den Elementen BT-F empfehlen wir, sich auf das in Abbildung 1 dargestellte Schema zu beziehen. Dieses System zeichnet sich durch den Einsatz eines Anschlussgeräts (4) aus, das an seinen Enden ein gegenläufiges Gewinde (eines rechtsläufig und eines linksläufig) besitzt, in Form eines gedrechselten Sechskanteisens. Setzt man mit Hilfe eines Schraubenschlüssels für jede Aufhängung ein BT-F mit einem BT-F S zusammen, wird es ermöglicht, die Förderrinne des Materials zu livellieren.

We recommend that you follow the diagram of figure 1 in order to make a suspension with the BT-F elements. This system focuses on the use of a link unit (4) with opposite threaded ends (right-hand and left-hand) obtained by drawing an hexagonal bar. By assembling one BT-F and one BT-F S for each suspension, with a monkey spanner you can level the chute where the material is being conveyed.

Die Abbildung 2 verdeutlicht das Beispiel einer Aufhängung mit nicht regulierbarem Achsabstand. Dieses System sieht den Gebrauch eines Anschlussgeräts (4) vor, realisiert durch ein Sechskanteisen mit den zwei Enden BT-F mit dem gleichen Gewinde (rechts oder links). In dem Moment, da diese Aufhängung mit der Rinne verbunden ist, ist eine Regulierung des Achsabstand nicht mehr möglich.


Figure 2 represents the diagram of a suspension with non adjustable axle base. This system can be operated with a link unit (4) from a threaded bar with two BT-F mounted at both ends with the same thread (right-hand or left-hand). Once the suspension has been fixed to the channel, the axle base cannot be further adjusted.

Schwingelement VIB Typ: TB / Elastic Components VIB Type: TB



Tipo <i>Typ</i> e	Cod. N°	Fa max	≮γ max	n	В	D	F	L	L1	N	Р	R	S	Т	Peso Weight in kg
TB 30	RE020768	375	10°	1150	6 +0,5	39	12 ±0,3	50	55	31,5	45	22	M12	20	0,20
TB 30 S	RE020770	375	10°	1150	6 +0,5	39	12 ±0,3	50	55	31,5	45	22	M12 S	20	0,20
TB 40	RE020772	945	10°	1150	8 +0,5	54	20 ±0,4	60	65	40,5	60	28	M16	27	0,60
TB 40 S	RE020774	945	10°	1150	8 +0,5	54	20 ±0,4	60	65	40,5	60	28	M16 S	27	0,60
TB 50	RE020776	1930	10°	760	10 +0,5	74	25 ±0,4	80	90	53	80	42	M20	37	1,40
TB 50 S	RE020778	1930	10°	760	10 +0,5	74	25 ±0,4	80	90	53	80	42	M20 S	37	1,40
TB 60	RE020780	3350	10°	760	12 +0,5	89	$35{\scriptstyle~\pm 0,5}$	100	110	67	100	48	M24	44,5	1,85
TB 60 S	RE020782	3350	10°	760	12 +0,5	89	35 ±0,5	100	110	67	100	48	M24 S	44,5	1,85
TB 70	RE020784	5720	10°	560	M12x40	80	40 ±0,5	120	130	65	105	60	M36	40	7,00
TB 70 S	RE020786	5720	10°	560	M12x40	80	40 ±0,5	120	130	65	105	60	M36 S	40	7,00
TB 80	RE020788	11350	6°	330	M16x22	110	45	200	210	75	130	80	M42	55	20,00
TB 80 S	RE020790	11350	6°	330	M16x22	110	45	200	210	75	130	80	M42 S	55	20,00
TB 100	RE020796	23000	6°	90	M20x28	136	60	300	310	92	160	100	M52	68	38,00

- Fa: Maximale Beschleunigungsstärke in N / Max acceleration force in N
- ★ Schwingwinkel in ° / Oscillating angle in °

n:
Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮±5°.

Legende / Key:

- 1: Förderrinne / Sliding chute
- 2: Aufhängung VIB Typ BT-F / BT-F suspension
- 3: Schubstangenkopf VIB Typ TB / TB Drive head
- 4: Anschlussgerät / Connecting rod
- B: Schwerpunkt / Centre of gravity
- c: Achsabstand der Schubstange / Distance between centers (rod)
- G: Gesamtgewicht / Total weight
- I: Achsenabstand / Distance between centers (rocker)
- L_f: Minimallänge des Gewindeteils (1.5-2 S)
 - Min Screwed-in length (1.5-2 S)
- Re: Radius der Schubkurbel / Crank radius
- α: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle

MATERIALIEN

Der externe Körper ist aus Stahl in den Größen 20, 70, 80 und 100; aus Aluminium in den Größen 30-40-50-60 gefertigt. Das Pult ist ein Aluminiumprofil in den Größen von 20 bis 70, in Stahl in den Größen 80 und 100.

BEHANDLUNG

Der externe Körper ist ofenlackiert, das interne Pult mit einem RAL Lack überzogen.

VERWENDUNG

Die Schwingkomponente VIB Typ TB wird generell als Verbindungsscharnier im "Schubstangenkopf" zum Einsatz gebracht. Verglichen mit einem herkömmlichen Kugelgelenk ermöglicht es dank seiner Elastizität, die Bewegung mit einer besseren Gradualität zu übertragen.

MATERIALS

The external body is made of steel in the sizes 20, 70, 80 and 100, light metal die cast in the sizes 30-40-50-60. The inner square is made of alloy profiles from size 20 to 70, steel in the sizes 80 and 100.

TREATMENTS

The external body is oven-painted while the inner square is covered with a RAL varnish.

DUTY

TB oscillating component is generally used as an elastic hinge in the joint of the big end of the connecting rod. Compared to a traditional ball joint, VIB type TB transfers the movement with a more gradualness.

SCHWINGELEMENTE

BERECHNUNGSBEISPIEL: Wahl eines Schubstangenkopfs TB

CALCULATION EXAMPLE: Drive head TB selection

Initial Daten / Given data:

Drehgeschwindigkeit: Rotation velocity:

150 min⁻¹

Gesamtgewicht: Total weight:

5800 N

Radius der Schubkurbel:

18 mm

Achsabstand der Schubstange:

250 mm

Crank radius:

Distance between centers (rod):

Unbekannte / Unknow data:

Wahl der Größe / Size selection

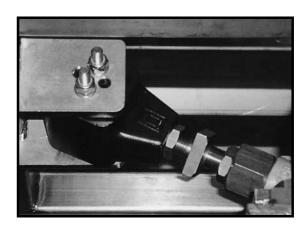
Berechnungsschema / Calculation steps:

Quotient R_e/c:
$$= \frac{18}{250} = 0.072 < 0.1$$

0,1= Wert unter welchem es möglich ist, eine harmonische Stimulierung zu erhalten

0,1= value under that it is possibile to achieve an harmonic excitation

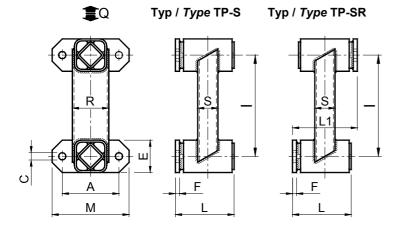
$$\gamma\text{: }2 \cdot \text{arcsin} \left(\frac{R_e}{c}\right) = 2 \cdot \text{arcsin} \left(\frac{18}{250}\right) = 8,28^{\circ}$$


Periphär-

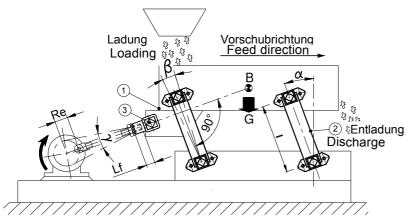
Geschwindigkeit =
$$\frac{R_e \cdot \pi \cdot n}{30} = \frac{18 \cdot \pi \cdot 150}{30} = 282,6 \text{ mm/s}$$

F_a: Beschleunigungskraft:
$$= \frac{V_p^2 \cdot G}{R_p \cdot 9810} = \frac{282,6^2 \cdot 5800}{19 \cdot 9810} = 2485,13 \text{ N}$$

Konklusion: Verwendet werden muss ein Element TB 60


Conclusion: It must be used one element TB 60

Schwingelement VIB Typ: TP-S und TP-SR / Elastic Components VIB Type: TP-S and TP-SR


Тур <i>Тур</i> е	Code-Nr. Cod. N°	Q	n	D _m	E _d	A	С	E	F	ı	L	L1	М	R	S	Gewicht Weight in kg	Typ Type	Code-Nr. Cod. N°
TP-S 20	RE020622	96	1150	17	4,8	50	7	25	4	100	50	56	70	35	20	0,58	TP-SR 20	RE020642
TP-S 30	RE020624	197	1150	21	10,0	60	9,5	35	5	120	62	68	85	40	20	0,76	TP-SR 30	RE020644
TP-S 40	RE020626	385	750	28	11,2	80	11,5	45	5	160	73	80	110	60	40	1,75	TP-SR 40	RE020646
TP-S 50	RE020628	765	750	35	18,3	100	14	60	6	200	95	104	140	70	50	3,72	TP-SR 50	RE020648
TP-S 60	RE020630	1510	750	35	31,8	130	18	70	8	200	120	132	180	80	40	5,57	TP-SR 60	RE020650
TP-S 70	RE020632	2370	560	44	35,2	140	18	80	10	250	145	160	190	90	50	8,32	TP-SR 70	RE020652

Q: Maximale Belastung in N pro Aufhängung / Max loading in N per rocker suspension

n: Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮±5°

D_m: Maximale Amplitude in mm / Max amplitude given in mm

E_d:
Dynamic spring value in Nm/° at per ≮±5°, in frequency range 300-600 min⁻¹

Legende / Key:

- 1: Förderrinne / Sliding chute
- 2: Aufhängung VIB Typ TP-S / TP-S suspension
- 3: Schubstangenkopf VIB Typ TB / TB Drive head
- B: Schwerpunkt / Centre of gravity
- G: Gesamtgewicht / Total weight
- I: Achsenabstand / Distance between centres
- L_f: Minimallänge des Gewindeteils (1.5-2 S) / Min Screwed-in lenght (1.5-2 S)
- Re: Radius der Schubkurbel / Crank radium
- S: Durchmesser des Schubstangenkopfs VIB Typ TB / Threaded diameter inside $type\ TB$
- α: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle
- γ: Schwingwinkel der Schubkurbel / Oscillating crank angle

MATERIALIEN

Externer Rahmen, interne Pults und Flansche sind aus Stahl.

BEHANDLUNG

Externer Rahmen, interne Pults und Flansche sind ofenlackiert.

VERWENDUNG

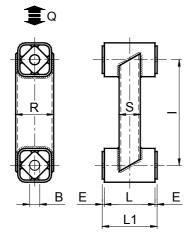
Das schwingelement TP-S wird in erster Linie dazu verwendet, Aufhängungen mit nicht variierbarem Interesse in den Förderanlagen und Schüttelsieben, aktiviert durch Schubkurbel-Antrieb zu realisieren.

MATERIALS

The external structure, the inner square and the fixation flange are made of steel.

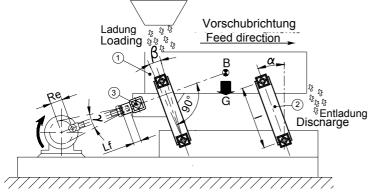
TREATMENTS

The external structure, the inner square and the fixation flange are oven-painted.


DUTY

TP-S oscillating component is generally used to realize oscillating rockers with not adjustable axle base in conveyors or screens actuated by connecting a rod/crank device.

Schwingelement VIB Typ: TP-F / Elastic Components VIB Type: TP-F


Тур <i>Тур</i> е	Code-Nr Cod. N°	Q	n	Dm	Ed	В	E	I	L	L1	R	s	Gewicht Weight in kg
TP-F 20	RE020662	96	1150	17	4,8	10 +0,40 +0,20	2,5	100	40	45	35	20	0,58
TP-F 30	RE020664	197	1150	21	10,0	13 +0,00	2,5	120	50	55	40	20	0,76
TP-F 40	RE020666	385	750	28	11,2	16 +0,50 +0,30	2,5	160	60	65	60	40	1,75
TP-F 50	RE020668	765	750	35	18,3	20 +0,50	5	200	80	90	70	50	3,72
TP-F 60	RE020670	1510	750	35	31,8	24 +0,50	5	200	100	110	80	40	5,57
TP-F 70	RE020672	2370	560	44	35,2	30 +0,50 +0,20	5	250	120	130	90	50	6,50

Q: Maximale Belastung in N pro Aufhängung / Max loading in N per rocker suspension

Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮±5°

D_m: Maximale Amplitude in mm / Max amplitude given in mm

E_d:
Dynamic spring value in Nm/° at per ≮±5°, in frequency range 300-600 min⁻¹

Legende / Key:

- 1: Förderrinne / Sliding chute
- 2: Aufhängung VIB Typ TP-F / TP-F suspension
- 3: Schubstangenkopf VIB Typ TB / TB Drive head
- 4. Anschlussgerät / Connecting rod
- B: Schwerpunkt / Centre of gravity
- G: Gesamtgewicht / Total weight
- I: Achsenabstand / Distance between centres
- L_f: Minimallänge des Gewindeteils (1.5-2 S) Min Screwed-in length (1.5-2 S)
- Re: Radius der Schubkurbel / Crank radium
- S: Durchmesser des Schubstangenkopfs VIB Typ TB Threaded diameter inside type TB
- a: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle
- y: Schwingwinkel der Schubkurbel / Oscillating crank angle

MATERIALIEN

Externer Rahmen ist aus Stahl, interne Pults sind aus Aluminiumprofil.

BEHANDLUNG

Externer Rahmen ist ofenlackiert, interne Pults sind mit einem RAL Lack überzogen.

VERWENDUNG

Das schwingelement TP-F wird in erster Linie dazu verwendet, Aufhängungen mit nicht variierbarem Interesse in den Förderanlagen und Schüttelsieben, aktiviert durch Schubkurbel-Antrieb zu realisieren.

MATERIALS

The external structure is made of steel while the inner squares are made of light alloy profile.

TREATMENTS

The external structure is oven-painted while the inner squares are covered with a RAL varnish.

DUTY

TP-F Oscillating component is particularly used to realize suspension with not adjustable axle base or screen rockers actuated by a connecting rod/crank device.

SCHWINGELEMENTE OSCILLATING MOUNTINGS

BERECHNUNGSBEISPIEL: Bestimmung der Anzahl der Aufhängungen, die notwendig sind für einen Schwingförderer, unter Verwendung der Gruppen bestehend aus TP-S 50 oder TP-F 50.

extstyle eta CALCULATION EXAMPLE: Determination of the mounting number for an oscillating conveyor, using TP-S 50 or

Initial Daten / Given data:

Drehgeschwindigkeit: 280 min⁻¹ Rotation velocity:

Gewicht der Rinne: 5580 N G_g:

Chute weight: Gewicht des zu transportierenden

1000 N G_m: Materials:

Material weight:

Re: Radius der Schubkurbel : Crank radius: 18 mm

Dynamische Elastizität: E_d: Dynamic spring value: 18 Nmm/°

Unbekannte / Unknow data:

X: Anzahl der zum Einsatz gebrachten Aufhängungen / Number of mountings

Berechnungsschema / Calculation steps:

Das Gesamtgewicht G wird durch die Summe des Gewichts der Rinne (G_g), addiert mit 22% des Gewichts des zu transportierenden Materials (G_m).

The total weight G is given by the sum of weight of the chute (G_a) plus 22% of the weight of the material to be conveyed (G_m)

G:
$$\frac{\text{Gesamtgewicht}}{\text{Total weight}}$$
 = $G_g + \frac{G_m \cdot 22}{100} = 5580 + \frac{1000 \cdot 22}{100} = 5800 \text{ N}$

E_t: Gesamt-Elastizität
$$= \frac{G}{9810} \cdot \left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 = \frac{5800}{9810} \cdot \left(\frac{\pi \cdot 280}{30}\right)^2 = 507,8 \text{ N/mm}$$

1) Zustand ohne Resonanz / Without resonance condition:

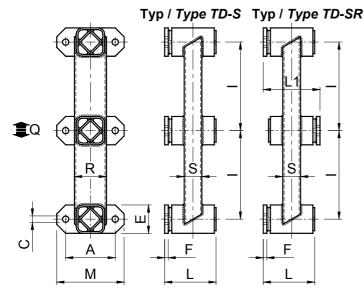
Die Anzahl der Elemente X lässt sich durch Division des Gesamtgewichts der schwingenden Masse durch die zulässige Belastung einer Aufhängung bestimmen, also: The number of the elements X is obtained by dividing the total weight of the oscillating mass by the load permitted by one mounting, so:

Konklusion: Es müssen zumindest 8 Aufhängungen TP-S 50 o TP-F 50 verwendet werden. Conclusion: It must be used 8 pcs TP-S 50 or TP-F 50 mountings at least.

2) Zustand mit Resonanz / With resonance condition:

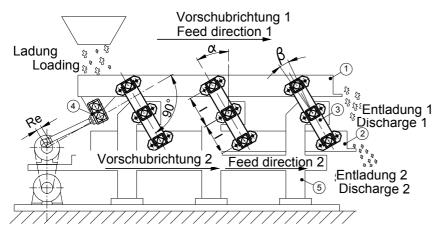
Die Gesamt-Elastizität Et der Aufhängung muss ungefähr 10% über der dynamischen Elastizität liegen, das bedeutet:

The total spring value E_t of the mounting must be at least 10% greater that than the dynamic spring value, so:


Konklusion: Es müssen 32 Aufhängungen TP-S 50 oder TP-F 50 verwendet werden.

Conclusion: It must be used 32 pcs TP-S 50 or TP-F 50 mountings at least.

Schwingelement VIB Typ: TD-S und TD-SR / Elastic Components VIB Type: TD-S and TD-SR



Тур <i>Тур</i> е	Code-Nr. Cod. N°	J=2	Q J=3	J=4	n	Dm	Ed	A	С	E	F	I	L	L1	М	R		Gweicht <i>Weight</i> in kg	TVA	Code-Nr. Cod. N°
TD-S 30	RE020684	140	116	92	605	17	21,7	60	9,5	35	5	100	62	68	85	40	20	1,30	TD-SR 30	RE020704
TD-S 40	RE020686	280	232	184	555	21	29,9	80	11,5	45	5	120	73	80	110	60	40	2,60	TD-SR 40	RE020706
TD-S 50	RE020688	560	470	368	485	28	43,0	100	14	60	6	160	95	104	140	70	50	5,40	TD-SR 50	RE020708
TD-S 60	RE020690	1120	940	736	430	35	47,7	130	18	70	8	200	120	132	180	80	40	8,10	TD-SR 60	RE020710
TD-S 70	RE020692	1700	1430	1140	395	44	52,8	140	18	80	10	250	145	160	190	90	50	12,70	TD-SR 70	RE020712

- Q: Maximale Belastung in N pro Aufhängung / Max loading in N per rocker suspension
- J: Index der schwingenden Maschine / Oscillating machine factor
- Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮±5°
- **D**_m: Maximale Amplitude in mm / Max amplitude given in mm

E_d:

Dynamic spring value in Nm/° at per ≮±5°, in frequency range 300-600 min⁻¹

Legende / Key:

- 1: Obere Förderrinne / Superior sliding chute (trough)
- 2: Untere Gegenmasse / Inferior counter mass
- 3: Aufhängung Typ VIB Typ TD-S / TD-S Suspension
- 4: Schwingkomponente VIB Typ AD-P / AD-P Oscillating Component
- 5: Fundament / Base plate
- a: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle
- I: Achsenabstand / Distance between centers

MATERIALIEN

Externer Rahmen, interne Pults und Flansche sind aus Stahl.

BEHANDLUNG

Externer Rahmen, interne Pults und Flansche sind ofenlackiert.

VERWENDUNG

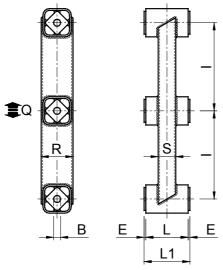
Die Schwingkomponenten TD-S werden in besonderem Maße zur Realisierung von elastischen Aufhängungen für Förderanlagen oder Schüttelsiebe mit Masse und Gegenmasse, betrieben durch Schubkubel-Antrieb, eingesetzt.

MATERIALS

The external structure, the inner squares and the fixation flange are oven-painted.

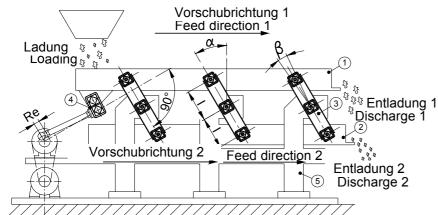
TREATMENTS

The external structure, the inner squares and the fixation flanges are made of steel.


DUTY

TD-S Oscillating component is generally use to realize rocker suspension for conveyors or screens with two-mass (trough – counter mass) actuated by a connecting rod/crank device.

Schwingelement VIB Typ: TD-F / Elastic Components VIB Type: TD-F



Тур <i>Тур</i> е	Code-Nr Cod. N°	J=2	Q J=3	J=4	n	Dm	Ed	В	E	I	L	L1	R	s	Gewicht Weight in kg
TD-F 30	RE020724	140	116	92	605	17	21,7	12,5 +0,20 +0,00	2,5	100	50	55	40	20	0,88
TD-F 40	RE020726	280	232	184	555	21	29,9	16 +0,25	2,5	120	60	65	60	40	1,95
TD-F 50	RE020728	560	470	368	485	28	43,0		5	160	80	90	70	50	4,02
TD-F 60	RE020730	1120	940	736	430	35	47,7	24 +0,25 +0,00	5	200	100	110	80	40	6,52

- Q: Maximale Belastung in N pro Aufhängung / Max loading in N per rocker suspension
- J: Index der schwingenden Maschine / Oscillating machine factor
- n:
 Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮±5°
- **D**_m: Maximale Amplitude in mm / Max amplitude given in mm

E_d:
Dynamic spring value in Nm/° at per ≮±5°, in frequency range 300-600 min⁻¹

Legende / Key:

- 1: Obere Förderrinne / Superior sliding chute (trough)
- 2: Untere Gegenmasse / Inferior counter mass
- 3: Aufhängung Typ VIB Typ TD-F / TD-F Suspension
- 4: Schwingkomponente VIB Typ AD-P / AD-P Oscillating component
- 5: Fundament / Base plate
- a: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle
- I: Achsenabstand / Distance between centers

MATERIALIEN

Externer Rahmen ist aus Stahl, interne Pults sind aus Aluminiumprofil.

BEHANDLUNG

Externer Rahmen ist ofenlackiert, interne Pults sind mit einem RAL Lack überzogen.

VERWENDUNG

Die Schwingkomponenten TD-F werden in besonderem Maße zur Realisierung von elastischen Aufhängungen für Förderanlagen oder Schüttelsiebe mit Masse und Gegenmasse, betrieben durch Schubkubel-Antrieb, eingesetzt.

MATERIALS

The external structure is made of steel while the inner squares are made of light alloy profile.

TREATMENTS

The external structure is oven-painted, while the inner squares are covered with a RAL varnish.

DUTY

TD-F Oscillating component is generally use to realize rocker suspensions for conveyors or screens with two-mass (trough – counter mass) actuated by a connecting rod/crank device.

SCHWINGELEMENTE OSCILLATING MOUNTINGS

BERECHNUNGSBEISPIEL: Bestimmung der Anzahl der Aufhängungen, die notwendig sind für einen Schwingförderer, unter Verwendung der Gruppen bestehend aus TD-S 40 oder TD-F 40

CALCULATION EXAMPLE: Determination of the mounting number for an oscillating conveyor using TD-S 40 or

Initial Daten / Given data:

Drehgeschwindigkeit: Rotation velocity:

385 min⁻¹

Radius der Schubkurbel

Crank radius:

Gewicht der Rinne: Chute weight:

1734 N

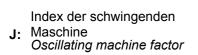
Dynamische Elastizität: Dynamic spring value:

29,9 Nmm/°

18 mm

Gewicht des zu transportierenden

G_m: Materials:


300 N

Material weight:

Unbekannte / Unknow data:

X: Anzahl der zum Einsatz gebrachten Aufhängungen / Number of mountings

Berechnungsschema / Calculation steps:

$$= \frac{\left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 \cdot Re}{9810} = \frac{\left(\frac{\pi \cdot 385}{30}\right)^2 \cdot 18}{9810} = 3,0$$

Das Gesamtgewicht G wird durch die Summe des Gewichts der Rinne (\mathbf{G}_{g}), addiert mit 22% des Gewichts des zu transportierenden Materials (**G**_m).

The total weight G is given by the sum of weight of the chute (G_a) plus 22% of the weight of the material to be conveyed (G_m)

G:
$$\frac{\text{Gesamtgewicht}}{\text{Total weight}} = G_g + \frac{G_m \cdot 22}{100} = 1734 + \frac{1000 \cdot 22}{100} = 1800 \text{ N}$$

Gesamtelastizität
$$Total \ spring \ value = \frac{G}{9810} \cdot \left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 = \frac{1800}{9810} \cdot \left(\frac{\pi \cdot 385}{30}\right)^2 = 298 \ \text{N/mm}$$

1) Zustand ohne Resonanz / Without resonance condition:

Die Anzahl der Elemente X lässt sich durch Division des Gesamtgewichts der schwingenden Masse durch die zulässige Belastung einer Aufhängung

X: bestimmen, also: The number of the elements X is obtained by dividing the total weight of the oscillating mass by the load permitted by one mounting, so:

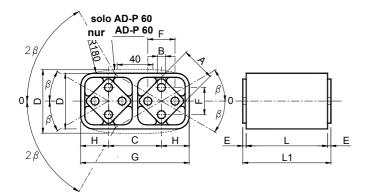
Konklusion: Es müssen zumindest 8 Aufhängungen TD-S 40 oder TD-F 40 verwendet werden. Conclusion: It must be used 8 pcs TD-S 40 or TD-F 40 mountings at least.

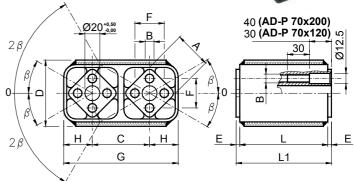
2) Zustand mit Resonanz / With resonance condition:

than the dynamic spring value, so:

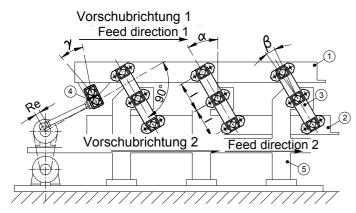
Die Gesamt-Elastizität Et der Aufhängung muss ungefähr 10% über der aynamischen Elastizität liegen, das bedeutet:

The total spring value E_t of the mounting must be at least 10% greater that $= \frac{E_t}{0.9 \cdot E_d} = \frac{298}{0.9 \cdot 29.9} = 11,07 \implies 12$ than the dynamic spring value. dynamischen Elastizität liegen, das bedeutet:


Konklusion: Es müssen 12 Aufhängungen TD-S 40 oder TD-F 40 verwendet werden.


Conclusion: It must be used 12 pcs TD-S 40 or TD-F 40 mountings at least.

Schwingelement VIB Typ: AD-P (mit Funktion der Schubstangenköpfe Elastic Components VIB Type: AD-P (as Drive Head)



GRÖßE 40- 50 und 60 / SIZE 40 - 50 and 60

GRÖßE 70 / SIZE 70

Type Typ	Code-Nr. Cod. N°	Ed	Α	В	С	D	E	F	G	н	L	L1 +0,0 -0,3	Peso Weight in kg
AD-P 40 x 60	RE020326	154	27	8 +0,5	44	45 ±0,15				22,5	60	65	0,54
AD-P 50 x 80	RE020331	202	38	10 +0,5	60	68 ±0,2	2,5	25 ±0,4	120 +0,3	30	80	90	1,25
AD-P 60 x 80	RE020335	212	45	12 +0,5	73	82 ±0,2	5	35 ±0,5	145 +0,4	36	80	90	2,00
AD-P 60 x 100	RE020336	250	45	12 +0,5	73	82 ±0,2	5	35 ±0,5	145 +0,4	36	100	110	2,21
AD-P 70 x 120	RE020340	384	50	M12	78	90 ±0,2	5	40 ±0,5	156 +0,4	39	120	130	5,95
AD-P 70 x 200	RE020341	576	50	M12	78	90 ±0,2	5	40 ±0,5	156 +0,4	39	200	210	9,82

E_d:
Dynamic spring value in Nm/° at per ≮±5°, in frequency range 300-600 min⁻¹

der externe Körper

Legende / Key:

- 1: Obere Förderrinne Superior sliding chute (trough)
- 2: Untere Gegenmasse / Inferior counter mass
- 3: Aufhängung Typ VIB Typ TD-S / TD-S Suspension
- 4: Schwingkomponente Typ VIB Typ AD-P AD-P Oscillating component
- 5: Fundament / Base plate
- a: Montagewinkel von 20° bis 30° Rocker angle from 20° to 30°
- β: Arbeitswinkel / Working angle
- I: Achsenabstand / Distance between centers

MATERIALIEN

Von Größe 40 bis Größe 60 der externe Körper und die interne Pults sind aus Aluminiumprofil. In der Größe 70, der externe Körper ist aus Stahl und die interne Pults aus Aluminiumprofil.

BEHANDLUNG

Der externe Körper ist ofenlackiert, die interne Pults sind mit einem RAL Lack überzogen.

VERWENDUNG

Das Schwingelement **AD-P** mit Funktion des elastischen, schwingenden Schubstangenkopfs, wird in der Regel als elastisches Scharnier zur Übertragung der Bewegung an die Schwingrinne genutzt.

Das Schwingelement **AD-P** mit Funktion des Schubstangenkopfs, kann nur in Schwingförderern im Zustand der Resonanz eingesetzt werden.

Der maximale Gesamtschwingwinkel der Schubkurbel muss γ <10° mit Variation <±5° der Position 0 sein.

MATERIALS

From size 40 to 60 external boy and inner square are made out of light alloy profile. For size 70 the external body is made of steel while the inner squares are made of alloy profiles.

TREATMENTS

The external body is oven-painted while the inner tube is covered with a RAL varnish.

DUTY

AD-P Oscillating component as drive head can be used only in oscillating conveyor as elastic hinge to transfer the movement in oscillating trough.

AD-P Oscillating component as drive head can be used only in shaker conveyors with resonance condition.

The maximum angle of the total oscillating angle must not exceed $y<10^{\circ}$ from $0 \le \pm 5^{\circ}$

SCHWINGELEMENTE

BERECHNUNGSBEISPIEL: Wahl eines Schubstangenkopfs AD-P

CULATION EXAMPLE: Drive head AD-P selection

18 mm

Initial Daten / Given data:

Drehgeschwindigkeit: 385 min⁻¹ Rotation velocity:

G_g: Gewicht der Rinne : 1734 N Chute weight:

Gewicht des zu transportierenden

G_m: Materials: 300 N

Weight material:

Unbekannte / Unknow data:

Crank radius:

Wahl der Größe / Size selection

Radius der Schubkurbel

Berechnungsschema / Calculation steps:

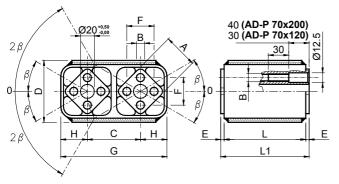
J: Index der schwingenden Maschine Oscillating machine factor
$$= \frac{\left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 \cdot Re}{9810} = \frac{\left(\frac{\pi \cdot 385}{30}\right)^2 \cdot 18}{9810} = 3,0$$

Das Gesamtgewicht G wird durch die Summe des Gewichts der Rinne (\mathbf{G}_{g}), addiert mit 22% des Gewichts des zu transportierenden Materials (G_m).

The total weight G is given by the sum of weight of the chute (G_a) plus 22% of the weight of the material to be conveyed (G_m)

G: Gesamtgewicht
$$= G_g + \frac{G_m \cdot 22}{100} = 1734 + \frac{1000 \cdot 22}{100} = 1800 \text{ N}$$

$$\textbf{E_t:} \quad \begin{array}{ll} \text{Gesamt-Elastizit\"{a}t} \\ \text{Total spring value} \end{array} \quad = \frac{G}{9810} \cdot \left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 = \frac{1800}{9810} \cdot \left(\frac{\pi \cdot 385}{30}\right)^2 = 298 \text{ N/mm}$$

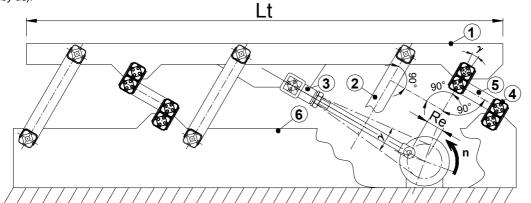

Konklusion: Verwendet werden muss ein Element AD-P 70x120

Conclusion: It must be used one piece AD-P 70x120

Schwingelement VIB Typ: AD-P (mit Funktion des elastischen Lagers) Elastic Components VIB Type: AD-P (Elastic spring accumulator)

Typ Type	Code-Nr. Code no.	Ed	A	В	С	D	E	F	G	Н	L	L1 +0,0 -0,3	Gewicht Weight in kg
AD-P 60 x 80	RE020335	212	45	12 +0,5	73	82 ±0,2	5	35 ±0,5	145 +0,4	36	80	90	2,00
AD-P 60 x 100	RE020336	250	45	12 +0,5	73	82 ±0,2	5	35 ±0,5	145 +0,4	36	100	110	2,21
AD-P 70 x 120	RE020340	384	50	M12	78	90 ±0,2	5	40 ±0,5	156 +0,4	39	120	130	5,95
AD-P 70 x 200	RE020341	576	50	M12	78	90 ±0,2	5	40 ±0,5	156 +0,4	39	200	210	9,82

MATERIALIEN / MATERIALS


In der Größe 60 bestehen der externe Körper und die internen Pulte aus Aluminiumprofil. In der Größe 70 hingegen ist der externe Körper aus Stahl gearbeitet, die internen Pulte sind aus Aluminiumprofil / Size 60 external body and inner square are made out of light alloy profile. Size 70: external body is made of steel while inner square is made out of light alloy profile.

BEHANDI UNG

Der externe Körper ist ofenlackiert und die internen Pulte sind mit einem RAL Lack überzogen / The external body is oven-painted while the inner square is covered with a RAL varnish.

VERWENDUNG / DUTY

Das elastische Lager besteht aus zwei Schwingelemente AD-P, die mittels eines Anschlussgeräts miteinander verbunden sind (Letzteres wird nicht von uns zur Verfügung gestellt) / The elastic spring accumulator consists of two elastic components AD-P with a connection link (this is not supplied by us)

1: Förderrinne	Sliding chut
(Troughs)	_

- 2: Elastische Aufhängung Elastic suspension
- 3: VIB Typ TB / VIB Type TB
- 4: VIB Typ AD-P mit Lager-Funktion (St2) VIB type AD-P as elastic accumulator (2 pieces)
- 5: Anschlussgerät Connecting link
- 6: Fundament / Base plate
- R_e: Radius der Schubkurbel Crank radius

Elastisches Lager, gebildet aus zwei Elementen: Elastic accumulator composed of two elements:	E_d/2 [N/mm]	Gesamtschwingwinkel γ [°] Total oscillating angle γ [°]	R _e [mm]	n [min ⁻¹]
		10° (±5°)	12,5	500
2•AD-P 60x80	106	8° (±4°)	10,0	750
		6° (±3°)	7,5	1230
		10° (±5°)	12,5	460
2•AD-P 60x100	125	8° (±4°)	10,0	690
		6° (±3°)	7,5	1150
		10° (±5°)	27,2	400
2•AD-P 70x120	192	8° (±4°)	21,8	575
		6° (±3°)	16,4	920
		10° (±5°)	27,2	365
2•AD-P 70x200	288	8° (±4°)	21,8	520
		6° (±3°)	16,4	825

Die elastischen Lager können <u>ausschließlich in einem</u>
<u>Zustand, der dem der Resonanz enstpricht,</u> zum Einsatz gebracht werden und dienen zur Reduktion der aufzuwendenden Aktivierungskraft und der Last, die auf die Strukturen einwirkt.

Die elastischen Lager werden somit eingesetzt, um die Anzahl der Aufhängungen zu reduzieren, die im Zustand der Resonanz von Nutzen sind.

Das elastische Lager macht es möglich, die elastische Dynamik jedes einzelnen VIB Typ AD-P um die Hälfte zu reduzieren. Bedingt durch seine Montage "in Serie", bestimmt das elastische Lager, verglichen mit einem einzelnen Element, einen um die Hälfte reduzierten Wert der dynamischen Elastizität (E_d/2).

The <u>only condition</u> in which elastic accumulators can be used is a <u>near-resonance state</u> in order to reduce the actuator power and damp structural stresses.

Elastic accumulators are used to reduce the number of elastic suspensions requested under resonance conditions.

The elastic accumulators allow to reduce the dynamic elasticity of each VIB AD-P type in half. Given its standard assembly, the elastic damper defines the value of half dynamic elasticity (E_d/2) versus each element.

SCHWINGELEMENTE OSCILLATING MOUNTINGS

BERECHNUNGSBEISPIEL: Wahl eines elastischen Lagers AD-P

CALCULATION EXAMPLE: AD-P Elastic accumulator selection

Initial Daten / Given data:

Länge der Förderanlage: 8 m

Conveyor lenght::

Anzahl an Aufhängungen: Number of mountings:

Drehgeschwindigkeit:

Rotation velocity:

345 min⁻¹

6 (3 per lato / per side)

Gewicht der Rinne:

Gg: Chute weight.:

Gewicht des zu transportierenden

G_m: Materials: Material weight:

Re: Radius der Schubkurbel :

Crank radius:

<u>Unbekannte</u> / <u>Unknow data:</u>

Belastung pro Aufhängung Load on per suspensions

Gesamte dynamische Elastizität, gegeben durch alle

Etot: dynamischen Komponenten

Dynamic spring value given by all the elastic components Gesamte dynamische Elastizität, gegeben durch die

E_{d2}: elastischen Lager

Dynamic spring value given by the elastic accumulators

Gesamte dynamische Elastizität, gegeben durch die Aufhängungen E_{d1}: Elastic spring value given by the suspensions

3000 N

500 N

7,5 mm

Stock an dynamischer Elastizität Dynamic spring reserve value

Berechnungsschema / Calculation steps:

Index der schwingenden

Maschine J: Oscillating machine factor

$$= \frac{\left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 \cdot Re}{9810} = \frac{\left(\frac{\pi \cdot 345}{30}\right)^2 \cdot 7,5}{9810} = 1,0$$

Das Gesamtgewicht G wird durch die Summe des Gewichts der Rinne (Gg), addiert mit 22% des Gewichts des zu transportierenden Materials (G_m).

The total weight G is given by the sum of weight of the chute (G_a) plus 22% of the weight of the material to be conveyed (G_m)

G: Gesamtgewicht
$$= G_g + \frac{G_m \cdot 22}{100} = 3000 + \frac{500 \cdot 22}{100} = 3110 \text{ N}$$

$$\textbf{E_t:} \quad \begin{array}{ll} \text{Gesamt-Elastizit\"{a}t} \\ \textit{Total spring value} \end{array} = \frac{G}{9810} \cdot \left(\frac{2 \cdot \pi \cdot n}{60}\right)^2 = \frac{3110}{9810} \cdot \left(\frac{\pi \cdot 345}{30}\right)^2 = 413,4 \text{ N/mm} \end{array}$$

components AD-P 60x80 that give a total dynamic spring value:

Die Wahl des Elements erreicht man durch die Division des Gesamtgewichts G

uurcn die Anzani der Aufnangungen X, also: The element selection is obtained by dividing the total weight G by the = $\frac{G}{X} = \frac{3110}{6} = 518,3 \text{ N}$ suspensions number, so:

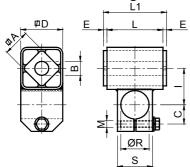
→ Es müssen 6 Aufhängungen TP-F 50 zum Einsatz gebracht werden, welche eine gesamte dynamische Elastizität von \mathbf{E}_{d1} = 18,3·6 = 109,8 N/mm zur Verfügung stellen.

→ It must be used 6 pcs **TP-F 50** mountings that give a total dynamic spring value $E_{d1} = 18,3.6 = 109,8$ N/mm

Vorgesehen ist der Einsatz von n°3 elastischen Lagern, jedes von ihnen gebildet aus 2 elastischen Komponenten AD-P 60x80, die folgenden Gesamtwert dynamischer

Ed2: Elastizität darstellen: = 106·3 = 318 N/mm We can use 3 pieces of spring elastic accumulator, each consisting of 2 elastic

$$\mathbf{E_{tot}} = \mathbf{E_{d1}} + \mathbf{E_{d2}} = 109.8 + 318 = 427.8 \text{ N/mm}$$


$$S = E_{tot} - E_t = 427.8 - 413.4 = 14.4 \text{ N/mm } (3.5 \%)$$

Dem Schwingsystem verbleiben 3,5 % an Elastizität, die als Reserve für mögliche Überbelastungen bewahrt werden. The oscillating system has still 3,5 % of elastic spring value that can be used as reserve for a possible overloading.

Schwingelement VIB Typ: GF / Elastic Components VIB Type: GF

Typ <i>Typ</i> e	Code-Nr Code no.		Q		N	Md	Α	В	С	D	E	ı	L	L1	М	R	s	Gewicht Weight in kg
		J=2	J=3	J=4														III Ng
GF 40	RE021076	280	230	190	570	2,5	27	16	21,5	45	2,5	39	60	65	M10	30	40	0,90
GF 50	RE021078	580	480	380	490	6,4	38	20	26,5	60	5	52	80	90	M10	40	50	1,40

Q: Maximale Belastung in N pro Aufhängung / Max loading in N per rocker suspension

J: Index der schwingenden Maschine / Oscillating machine factor

n:

Max crank rotation velocity in min⁻¹ at the max angle ≮10° from 0 ≮ ±5°

D_m: Maximale Amplitude in mm / Max amplitude in mm

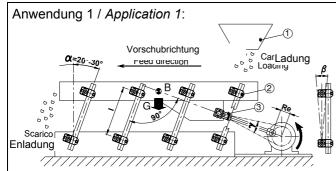
E_d:

Dynamic spring value in Nm/° at per ≠ ±5°, in frequency range 300-600 min⁻¹

MATERIALIEN / MATERIALS

Der externe Körper ist aus Stahl, das interne Pult ist ein Aluminiumprofil / The external body is made of steel while the inner square is made of light alloy profile

BEHANDLUNG / TREATMENTS


Der externe Körper ist ofenlackiert, das interne Pults mit einem RAL Lack überzogen / The external body is oven-painted while the inner square is covered with a RAL varnish.

VERWENDUNG / DUTY

Das Schwingelement GF wird hauptsächlich verwendet zur Realisierung der Aufhängungen in Förderanlagen und in Schüttelsieben, die mit Schubkurbelantrieb aktiviert werden.

Mit den Komponenten GF wird es ermöglicht, Aufhängungen zu konstruieren, die über einen variablen Achsabstand sowohl für Systeme, die mit einer einzigen Masse betrieben werden, als auch für solche, die mit Masse und Gegenmasse funktionieren, auszeichnen. Für das Anschlussgerät, welches mit einem Schlauch von rundem Querschnitt konstuiert wird, hat der Kunde Sorge zu tragen.

Oscillating components GF are generally used to realize rocker suspension in conveyor and screens actuated by a connecting rod/crank device. With GF components it is possible realize rocker suspension with adjustable axle base in one mass system or two mass system (with counter mass). The customer supplies the round connecting link that is realize with a round section tube.

Legende:

- 1: Ladungstrichter / Load hopper
- 2: Schwingelement VIB Typ GF / GF Elastic component
- 3: Schwingelement VIB Typ TB / TB Elastic Component
- B: Schwerpunkt / Centre of gravity
- G: Gewicht / Weight
- Re: Radius der Schubkurbel / Crank radius
- α: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°
- β: Max. Arbeitswinkel 10° / Working angle max 10°
- γ: Schwingwinkel Schubkurbel / Oscillating crank angle
- I: Achsenabstand / Distance between centers

BEISPIEL EINER SCHWINGGRUPPE MIT EINER EINZIGEN MASSE.

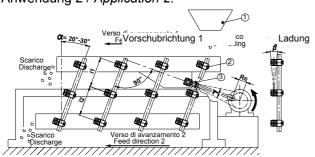
Das auszuführende Berechnungsbeispiel entspricht dem in dem Abschnitt im Hinblick auf BT-F erläuterten Muster.

Die dynamische Elastizität E_{d} , konstruiert für jede Aufhängung aus zwei Schwingelemente GF enspricht dem Verhältnis:

 $\mathbf{E_d}$: Dynamische Elastizität = $\frac{M_d \cdot 360 \cdot 1000}{.2}$ [N/mm]

EXAMPLE OF A ONE-MASS VIBRATING UNIT.

The calculation diagram you should follow is as described in the BT-F paragraph.


Dynamic elasticity E_d for each suspension consisting of two elastic components GF is obtained from the relation:

 E_d : Dynamic elasticity = $\frac{M_d \cdot 360 \cdot 1000}{1^2 \cdot \pi}$ [N/mm]

Anwendung 2 / Application 2:

Legen(Entladung
1: Ladungstrichter / Load hopper

2: Schwingelement VIB Typ CE / CE Flastic component 3: Schwingelement VIB Typ CE / CE Flastic component 4: Schwingelement VIB Typ CE / CE Flastic component

R_e: Radius der Schubkurbel / Crank radius

α: Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°

β: Arbeitswinkel max 10° / Working angle max 10°

y: Schwingwinkel Schubkurbel / Oscillating crank angle

I₁: Achsabstand obere Rinne / Superior chute distance between centers

l₂: Achsabstand untere Rinne / Inferior chute distance between centers

ANSCHLUSSGERÄT (zu Lasten des Kunden): EMPFOHLENE DIMENSIONEN CONNECTING LINK (to be supplied by the customer): RECOMMENDED DIMENSIONS

Typ Type	øт	Ms	I _M	UTILIZZO DUTY
GF 40	30	3	160	Nur Anwendung 1 - Only application 1
GF 40	30	4	220	Anwendung 1 / 2 / 3 - Application 1/2/3
GF 40	30	3	300	Anwendung 1 / 2 / 3 - Application 1/2/3
GF 50	40	3	200	Nur Anwendung 1 - Only application 1
GF 50	40	4	250	Anwendung 1 / 2 / 3 - Application 1/2/3
GF 50	40	5	300	Anwendung 1 / 2 / 3 - Application 1/2/3

ØT: Durchmesser des Anschluss-Schlauchs / Connecting tube diameter Ms: Minimal-Durchmesser des Schlauchs / Minimum thickness

I_M: Maximaler Achsabstand / Maximum distance between centers

Anwendung 3 / Application 3: Vorschubrichtung 1 Carico Loading Entladung ್ದಿಯೆ 2 **€** Verso di avanzamento 2 Entladung Feed direction 2 Vorschubrichtung 2

Legende / Key:

1: Ladungstrichter / Load hopper

2: Schwingelement VIB Typ GF / GF Elastic component

3: Schwingelement VIB Typ TB / TB Elastic component

R_e: Radius der Schubkurbel / Crank radius

 α : Montagewinkel von 20° bis 30° / Rocker angle from 20° to 30°

β: Arbeitswinkel max 10° / Working angle max 10°

y: Schwingwinkel Schubkurbel / Oscillating crank angle

I₁: Achsabstand obere Rinne / Superior chute distance between centers

I₂: Achsabstand untere Rinne / Inferior chute distance between centers

BEISPIEL EINER SCHWINGGRUPPE MIT **ZWEI** (gleiche Vorschubrichtung auf den BALANCIERTEN MASSEN Rinnen)

Das auszuführende Berechnungsbeispiel entspricht dem in dem Abschnitt im Hinblick auf TD-F erläuterten Muster.

Die dynamische Elastizität E_d , konstruiert für jede Aufhängung aus drei elastischen Komponenten GF enspricht dem Verhältnis:

$$\mathbf{E}_{d}$$
: Dynamische Elastizität = $\frac{270 \cdot M_{d} \cdot 1000}{\pi} \left(\frac{I_{1}^{2} + I_{2}^{2}}{I_{1}^{2} \cdot I_{2}^{2}} \right)$ [N/mm]

Mit diesem System wird es möglich, doppelt ausbalancierte Schwingrillen zu kreieren. Die untere Rinne kann zur Verdopplung der Transportkapazität des Systems eingesetzt werden, oder auch zum Auffangen von Material, das aus der oberen Rinne gefallen ist (kleine Siebgeräte, Kalibratoren, Mühlen etc). Die Vorschubrichtung des von oberen Rinne transportierten Materials entspricht der Vorschubrichtung des auf der unteren Rinne transportierten Materials.

EXAMPLE OF A TWO-BALANCED-MASS VIBRATING UNIT (same feed directions on the channels).

The calculation diagram you should follow is as described in the TD-F

Dynamic elasticity E_d for each suspension consisting of three elastic components GF is obtained from the relation:

$$\textit{\textbf{E}}_{\textit{d}} : \textit{Dynamic elasticity} = \frac{270 \cdot M_{\textit{d}} \cdot 1000}{\pi} \left(\frac{l_1^2 + l_2^2}{l_1^2 \cdot l_2^2} \right) \, [\textit{N/mm}]$$

The above system can be used to make double balanced vibrating channels. The lower channel may be used to double the system conveyance capacity as well as to collect the material falling from the upper channel (sieves, calibrators, dusters, etc.). The feed direction of the material carried by the upper and lower channel is the same.

BEISPIEL **EINER SCHWINGGRUPPE** MIT 7WFI BALANCIERTEN MASSEN (gegenläufige Vorschubrichtung auf den Rinnen)

Das auszuführende Berechnungsbeispiel entspricht dem in dem Abschnitt im Hinblick auf TD-F erläuterten Muster.

Die dynamische Elastizität Ed, konstruiert für jede Aufhängung aus drei elastischen Komponenten GF enspricht dem Verhältnis:

E_d: Dynamische Elastizität =
$$\frac{270 \cdot M_d \cdot 1000}{\pi} \left(\frac{I_1^2 + I_2^2}{I_1^2 \cdot I_2^2} \right) \text{ [N/mm]}$$

Mit diesem System wird es möglich, doppelt ausbalancierte Schwingrillen zu kreieren. Die untere Rinne kann zur Verdopplung der Transportkapazität des Systems bei gegenläufiger Vorschubrichtung zwischen der unteren und der oberen Rinne eingesetzt werden, oder auch zum Auffangen von Material, das aus der oberen Rinne gefallen ist (kleine Siebgeräte, Kalibratoren, Mühlen etc) und der Restitution des Materials an das System. Um eine gegenläufige Vorschubrichtung auf den beiden Rinnen erzeugen zu können, sollten die Aufhängungen senkrecht zu den Rinnen posizioniert sein und die oberen und unteren elastischen Komponenten GF um 180° gedreht zu der zentralen, auf der Anlage blockierten Kompontente.

EXAMPLE OF A TWO-BALANCED-MASS VIBRATING UNIT (opposite feed directions on the channels).

The calculation diagram you should follow is as described in the TD-F paragraph.

Dynamic elasticity E_d for each suspension consisting of three elastic components GF is obtained from the relation:

$$E_d$$
: Dynamic elasticity = $\frac{270 \cdot M_d \cdot 1000}{\pi} \left(\frac{l_1^2 + l_2^2}{l_1^2 \cdot l_2^2} \right) [N/mm]$

The above system can be used to make double balanced vibrating channels. The lower channel may be used to double the system conveyance capacity with opposite feed directions of the upper and lower channels as well as to collect the material falling from the upper channel (sieves, calibrators, dusters, etc.) in order to bring it to the starting point of the plant. The two channels opposite feed directions can be obtained by positioning suspensions perpendicular to the channels and by rotating of 180° the upper and lower GF elastic components with respect to the central component which is fixed to the structure.