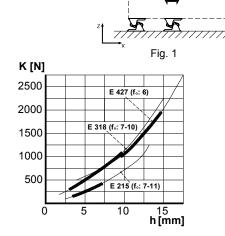
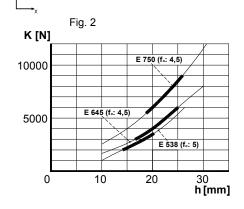
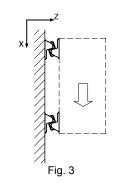


Eléments élastiques AN(E) / AN(E) elastic elements




Type Type	Code n°	к	А	В	B1	С	D	E	F	G	Н	ı	L	Poids Weight [Kg]
AN 20 E 215	RE020832 CE071981	0 - 375	10	54	44	2	5.5	58.5	65	85	90.5	7	49	0.40
AN 30 E 318	RE020834 CE071982	290 - 1145	12.5	65	52	2.5	5.5	69	80	105	110.5	9.5	60	0.65
AN 40 E 427	RE020836 CE071983	960 - 1940	15	88	72	3	8	85.5	110	140	148	11.5	71	1.32
AN 50 E 538	RE020838 CE071984	1750 - 3300	17.5	117	93	4	7	117	140	175	182	14	98	3.70
AN 60 E 645	RE020840 CE071985	3000 - 5740	25	143	115	5	14.5	138	170	220	234.5	18	120	5.50
AN 70 E 750	RE020842 CE071986	5230 - 8560	25	165	134	6	15	163	175	225	240	18	142	11.00


- Charge max admissible par élément en Newton dans la direction Z.
 - Maximum admissible load per element in Newton in the Z direction.
 - La charge dans la direction X est le double par rapport à K I The load in the X direction is the double with respect to K. La charge dans la direction Y est 20% par rapport à K / The load in the Y direction is 20% with respect to K.
- Hauteur de l'élément à vide [mm].
- Height of the loadless element [mm].
- B1 Hauteur de l'élément soumis à la charge maximale [mm].
 - Height of the element subjected at a maximum load [mm].
- Fréquence propre de l'élément élastique exprimée en Hz.
- Own frequency of the elastic elements in Hz.

De la taille 20(215) à la taille 60(645), les brides de fixation sont en acier verni tandis que le double-corps et les profils intérieurs sont en aluminium. Dans la taille 70(750), le double-corps et les brides de fixation sont en acier verni tandis que les profils intérieurs sont en aluminium.Cet élément élastique est idéal pour supporter les charges dans les trois directions principales, même de façon combinée. Il est donc particulièrement indiqué pour être utilisé comme amortisseur pour supporter les charges et isoler les vibrations (fecc>f₀), dans le champ des moyennes et basses fréquences. Ces éléments élastiques sont idéaux pour réaliser des tampons de butée. Per déterminer le degré d'isolation du système, consulter le graphique à la page 97. Tous les éléments utilisés sur la machine doivent avoir la même direction d'orientation (fig.1 et fig.2) et la direction de la force F sur le plan XY doit être orientée le long de X. Ces éléments peuvent aussi être fixés au mur en les positionnant comme indiqué dans la figure 3. Les graphiques ci-dessous montrent la capacité de charge (marquée en gras sur les courbes) typique des éléments AN(E), la flèche (h) et les fréquences propres (f_0) exprimées en Hz.

From the size 20(215) to the size 60(645) the fixing clamps are made of oven-painted steel while the double body and the inner shapes are in aluminium. In the size 70(750) the double body and the fixing clamps are made of oven-painted steel while the inner shape are in aluminium. This elastic element is suitable to support loads in the tree main directions, also in a combined manner. Therefore it is especially suitable to be used as shock absorber to support loads and to insulate the vibrations (fecc>f₀), in the field of the medium or low frecuencies. These elastic elements are suitable to realize travel-end buffers. To determine the insulation level of the system, please, see the diagram at page 97. All the elements used on the machine must have the same positioning direction (fig.1 e fig.2) and the direction of the F force on the XY plane have to be positioned along X. It is also possible to use these elements for the wall fixing, having the good sense to position them as shown in figure 3. The lower diagrams show the typical load capacity (bold underlined on the curve) of the AN(E) elements, the arrow (h) and the own frecuencies (f₀) in Hz.

